加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CIS5200、代做Java/Python程序語言
代寫CIS5200、代做Java/Python程序語言

時間:2024-11-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CIS5200: Machine Learning Fall 2024
Homework 2
Release Date: October 9, 2024 Due Date: October 18, 2024
• HW2 will count for 10% of the grade. This grade will be split between the written (30 points)
and programming (40 points) parts.
• All written homework solutions are required to be formatted using LATEX. Please use the
template here. Do not modify the template. This is a good resource to get yourself more
familiar with LATEX, if you are still not comfortable.
• You will submit your solution for the written part of HW2 as a single PDF file via Gradescope.
The deadline is 11:59 PM ET. Contact TAs on Ed if you face any issues uploading your
homeworks.
• Collaboration is permitted and encouraged for this homework, though each student must
understand, write, and hand in their own submission. In particular, it is acceptable for
students to discuss problems with each other; it is not acceptable for students to look at
another student’s written Solutions when writing their own. It is also not acceptable to
publicly post your (partial) solution on Ed, but you are encouraged to ask public questions
on Ed. If you choose to collaborate, you must indicate on each homework with whom you
collaborated.
Please refer to the notes and slides posted on the website if you need to recall the material discussed
in the lectures.
1 Written Questions (30 points)
Problem 1: Gradient Descent (20 points)
Consider a training dataset S = {(x1, y1), . . . ,(xm, ym)} where for all i ∈ [m], ∥xi∥2 ≤ 1 and
yi ∈ {−1, 1}. Suppose we want to run regularized logistic regression, that is, solve the following
optimization problem: for regularization term R(w),
min
w m
1
mX
i=1
log  1 + exp  −yiw
⊤xi
 + R(w)
Recall: For showing that a twice differentiable function f is µ-strongly convex, it suffices to show
that the hessian satisfies: ∇2f ⪰ µI. Similarly to show hat a twice differentiable function f is
L-smooth, it suffices to show that the hessian satisfies: LI ⪰ ∇2f. Here I is the identity matrix of
the appropriate dimension.
1
1.1 (3 points) In the case where R(w) = 0, we know that the objective is convex. Is it strongly
convex? Explain your answer.
1.2 (3 points) In the case where R(w) = 0, show that the objective is **smooth.
1.3 (4 points) In the case of R(w) = 0, what is the largest learning rate that you can choose such
that the objective is non-increasing at each iteration? Explain your answer.
Hint: The answer is not 1/L for a L-smooth function.
1.4 (1 point) What is the convergence rate of gradient descent on this problem with R(w) = 0?
In other words, suppose I want to achieve F(wT +1) − F(w∗) ≤ ϵ, express the number of iterations
T that I need to run GD for.
Note: You do not need to reprove the convergence guarantee, just use the guarantee to provide the
rate.
1.5 (5 points) Consider the following variation of the ℓ2 norm regularizer called the weighted ℓ2
norm regularizer: for λ1, . . . , λd ≥ 0,
Show that the objective with R(w) as defined above is µ-strongly convex and L-smooth for µ =
2 minj∈[d] λj and L = 1 + 2 maxj∈[d] λj .
1.6 (4 points) If a function is µ-strongly convex and L-smooth, after T iterations of gradient
descent we have:
Using the above, what is the convergence rate of gradient descent on the regularized logistic re gression problem with the weighted ℓ2 norm penalty? In other words, suppose I want to achieve
∥wT +1 − w∗∥2 ≤ ϵ, express the number of iterations T that I need to run GD.
Note: You do not need to prove the given convergence guarantee, just provide the rate.
Problem 2: MLE for Linear Regression (10 points)
In this question, you are going to derive an alternative justification for linear regression via the
squared loss. In particular, we will show that linear regression via minimizing the squared loss is
equivalent to maximum likelihood estimation (MLE) in the following statistical model.
Assume that for given x, there exists a true linear function parameterized by w so that the label y
is generated randomly as
y = w
⊤x + ϵ
2
where ϵ ∼ N (0, σ2
) is some normally distributed noise with mean 0 and variance σ
2 > 0. In other
words, the labels of your data are equal to some true linear function, plus Gaussian noise around
that line.
2.1 (3 points) Show that the above model implies that the conditional density of y given x is
P p(y|x) = 1.
Hint: Use the density function of the normal distribution, or the fact that adding a constant to a
Gaussian random variable shifts the mean by that constant.
2.2 (2 points) Show that the risk of the predictor f(x) = E[y|x] is σ.
2.3 (3 points) The likelihood for the given data {(x1, y1), . . . ,(xm, ym)} is given by.
Lˆ(w, σ) = p(y1, . . . , ym|x1, . . . , xm) =
Compute the log conditional likelihood, that is, log Lˆ(w, σ).
Hint: Use your expression for p(y | x) from part 2.1.
2.4 (2 points) Show that the maximizer of log Lˆ(w, σ) is the same as the minimizer of the empirical
risk with squared loss, ˆR(w) = m
Hint: Take the derivative of your result from 2.3 and set it equal to zero.
2 Programming Questions (20 points)
Use the link here to access the Google Colaboratory (Colab) file for this homework. Be sure to
make a copy by going to “File”, and “Save a copy in Drive”. As with the previous homeworks, this
assignment uses the PennGrader system for students to receive immediate feedback. As noted on
the notebook, please be sure to change the student ID from the default ‘99999999’ to your 8-digit
PennID.
Instructions for how to submit the programming component of HW 2 to Gradescope are included
in the Colab notebook. You may find this PyTorch linear algebra reference and this general
PyTorch reference to be helpful in perusing the documentation and finding useful functions for
your implementation.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代寫MMME4056、代做MATLAB編程設計
  • 下一篇:CSCI 201代做、代寫c/c++,Python編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩av首页| 黄色在线成人| 日韩黄色免费电影| 久久成人一区| 亚洲网址在线观看| 一区二区毛片| 岛国av在线播放| 久久久久久久久丰满| 国产激情综合| 成人国产精品一区二区免费麻豆| 一本一本久久| 婷婷精品视频| 动漫av一区| 国产尤物久久久| 日韩综合小视频| av日韩中文| aa亚洲婷婷| 久久精品不卡| 一区中文字幕| 日韩欧美黄色| 欧美激情aⅴ一区二区三区| 成人片免费看| 视频一区在线播放| 欧美高清一区| 精品国产99| 精品国产三级| 亚洲理论电影| 国产精品va视频| 欧美日韩 国产精品| 久久麻豆视频| 欧美aa在线| 日韩中文字幕1| 欧美日韩黑人| 久久久影院免费| 精品国产一区探花在线观看 | 亚洲高清在线一区| 欧美区一区二区| 中文字幕一区二区精品区| 美女www一区二区| 美女视频一区二区| 久久精品国产免费| 狠狠久久伊人中文字幕| 肉色欧美久久久久久久免费看| 国产精品传媒精东影业在线 | 亚洲三级av| 亚洲3区在线| 经典三级久久| 好吊妞视频这里有精品| 超碰成人在线观看| 精品久久91| 久久久久一区| 国模吧视频一区| 国精品一区二区三区| 婷婷综合网站| 亚洲激情网站| 亚洲综合丁香| 久热精品视频| av日韩中文| 亚洲精品国产嫩草在线观看| 欧洲一区二区三区精品| 精品欧美日韩精品| 久久精品国产精品亚洲综合| 99精品国产在热久久下载| 日本午夜一区二区| 国产精品亚洲综合在线观看 | 老鸭窝亚洲一区二区三区| 欧美一区=区| 麻豆国产在线| 少妇高潮一区二区三区99| 日本va欧美va精品发布| 欧美精品国产| 日韩av不卡一区| 国产 日韩 欧美 综合 一区| 四虎884aa成人精品最新| 在线日韩欧美| 性一交一乱一区二区洋洋av| 亚洲黄色免费av| 久久91视频| 91精品国产一区二区在线观看| 成人豆花视频| 亚洲日本va午夜在线电影| 99精品一区| 日韩天天综合| 电影天堂国产精品| 国产精品porn| 爱爱精品视频| 伊人情人综合网| 极品在线视频| 国产日产高清欧美一区二区三区| 欧美国产综合| 国产精品一线| 性色一区二区三区| 成人黄色在线| 色综合综合色| 99久久99热这里只有精品| 久久国产精品久久w女人spa| 国产一区二区三区国产精品| 亚洲视频在线免费| 欧美涩涩视频| 一本久久综合| 欧美国产视频| 国产色99精品9i| 亚洲激情欧美| 亚洲黑人在线| 亚洲精品推荐| 在线一区电影| 欧美一级在线| 日韩成人午夜电影| 激情91久久| 国产一区 二区| 日本伊人久久| 亚洲美女少妇无套啪啪呻吟| 日韩中文视频| 亚洲午夜久久| 欧美日韩少妇| 国产精品麻豆成人av电影艾秋| 日韩高清成人在线| 亚洲精品123区| 欧美一区久久| 精品香蕉视频| 亚洲免费福利| 日本三级久久| 丝袜美腿亚洲综合| 国产精品二区影院| 欧美日韩中文字幕一区二区三区 | 在线最新版中文在线| 粉嫩一区二区三区在线观看| 欧洲杯什么时候开赛| 欧美成人毛片| 美女av一区| 亚洲成人a级片| 欧美视频二区| 黄色aa久久| 久久亚洲精精品中文字幕| 久久亚洲视频| 国产精品亚洲二区| 亚洲一区激情| 99综合99| 午夜在线播放视频欧美| 9999精品| 国产婷婷精品| 欧美激情视频一区二区三区免费| 天堂综合网久久| 一区二区日韩免费看| 久久婷婷激情| 国产精品成人国产| 久久国产直播| 日日夜夜一区二区| 免费av一区| 日韩高清一区二区| 一区免费在线| 麻豆一区二区99久久久久| 欧美天堂亚洲电影院在线观看| 日本免费新一区视频| 亚洲女同中文字幕| 国产精品毛片aⅴ一区二区三区| 中文在线不卡| 国产欧美69| 裤袜国产欧美精品一区| 国产精品成人自拍| 深夜福利亚洲| 欧美在线影院| 国产欧美高清视频在线| 免费在线观看日韩欧美| 国产尤物久久久| 日韩大片在线播放| 久久狠狠婷婷| 欧美精品aa| 国模精品视频| 林ゆな中文字幕一区二区| 欧美在线不卡| 亚洲视频1区| 日韩不卡免费视频| 伊人久久高清| 一区二区亚洲精品| 日韩激情视频网站| 国产一区二区三区| 在线一区免费观看| 国产美女亚洲精品7777| 91超碰碰碰碰久久久久久综合| 欧美99久久| 天海翼亚洲一区二区三区| 亚洲国产精选| 亚洲一区二区动漫| 韩国女主播一区二区三区| 久久一区亚洲| 色偷偷综合网| 竹菊久久久久久久| 日韩成人dvd| 日韩精品三区四区| 国产中文在线播放| 欧美精选一区二区三区| 日本亚洲天堂网| 麻豆91在线播放| 超级碰碰久久| 国产午夜精品一区二区三区欧美| 日韩区欧美区| 亚洲一区二区av| 国产一区 二区| 日韩av密桃|