加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫159.740編程、代做c/c++,Python程序
代寫159.740編程、代做c/c++,Python程序

時間:2024-11-04  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



159.740 Intelligent Systems
Assignment #2 
N.H.Reyes 
Letter Recognition using Deep Neural Nets with Softmax Units 
Deadline: 4th of November 
Instructions: 
You are allowed to work in a group of 2 members for this assignment. 
Your task is to write a program that implements and tests a multi-layer feed-forward network for 
recognising characters defined in the UCI machine learning repository: 
http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
Requirements: 
1. Use QT to develop your Neural Network application. A short tutorial on QT, and a start-up 
code that will help you get started quickly with the assignment is provided via Stream. 
2. You may utilise/consult codes available in books and websites provided that you cite them 
properly, explain the codes clearly, and incorporate them with the start-up codes provided. 
3. Implement a multi-layer feed-forward network using backpropagation learning and test it on the 
given problem domain using different network configurations and parameter settings. There 
should be at least 2 hidden layers in your neural network. 
h21 h11 X1
X2
F1
F2 h12 h22
OF1
OF2
δh21
δh22 δh12
δf1
δf2
δh11
… … … … 
X16
Fm Hi Hj
OFm
Input node
Legend: 
hidden node
output node = softmax unit
 Note that all nodes, except the input nodes have a bias node attached to it. 
159.740 Intelligent Systems
Assignment #2 
N.H.Reyes 
A. Inputs 
 16 primitive numerical attributes (statistical moments and edge counts) 
 The input values in the data set have been scaled to fit into a range of integer values 
from 0 through 15. It is up to you if you want to normalise the inputs before feeding 
them to your network. 
B. Data sets 
 Use the data set downloadable from: 
 Training set: use the first 16,000 
 Test set/Validation set: use the remaining 4,000 
 Submit your training data, validation/test data in separate files. 
C. Performance measure: 
 Mean Squared Error (MSE) 
 Percentage of Good Classification (PGC) 
 Confusion Matrix (only for the best Neural Network configuration found) 
D. Training 
 Provide a facility for shuffling data before feeding it to the network during training 
 Provide a facility for continuing network training after loading weights from file (do not 
reset the weights). 
 Provide a facility for training the network continuously until either the maximum 
epochs have been reached, or the target percentage of good classification has been met. 
 For each training epoch, record the Mean Squared Error and the Percentage of Good 
Classification in a text file. You need this to plot the results of training later, to 
compare the effects of the parameter settings and the architecture of your network. 
E. Testing the Network 
 Calculate the performance of the network on the Test set in terms of both the MSE and 
PGC. 
F. Network Architecture 
 It is up to you to determine the number of hidden layers and number of hidden nodes 
per hidden layer in your network. The minimum number of hidden layers is 2. 
 Use softmax units at the output layer 
 Experiment with ReLU and tanh as the activation functions of your hidden units 
 Determine the weight-update formulas based on the activation functions used 
4. Provide an interface in your program for testing the network using an input string consisting of 
the 16 attributes. The results should indicate the character classification, and the 26 actual 
numeric outputs of the network. (the start-up codes partly include this functionality already, for 
a simple 3-layer network (1 hidden layer), but you need to modify it to make it work for the 
multiple hidden layer architecture that you have designed). 
5. Provide an interface in your program for: 
A. Reading the entire data set 
B. Initialising the network 
C. Loading trained weights 
D. Saving trained weights 
E. Training the network up to a maximum number of epochs 
159.740 Intelligent Systems
Assignment #2 
F. Testing the network on a specified test set (from a file) 
G. Shuffling the training set. 
6. Set the default settings of the user interface (e.g. learning rate, weights, etc.) to the best 
configuration that delivered the best experiment results. 
7. Use a fixed random seed number (123) so that any randomisation can be replicated empirically. 
8. It is up to you to write the main program, and any classes or data structures that you may 
require. 
9. You may choose to use a momentum term or regularization term, as part of backpropagation 
learning. Indicate in your documentation, if you are using this technique. 
10. You need to modify the weight-update rules to reflect the correct derivatives of the activation 
function used in your network architecture. 
11. Provide graphs in Excel showing the network performance on training data and test data 
(similar to the graphs discussed in the lecture). 
12. Provide the specifications of your best trained network. Fill-up Excel workbook 
(best_network_configuration.xlsx). 
13. Provide a confusion matrix for the best NN classifier system found in your experiments. 
14. Provide a short user guide for your program. 
15. Fill-up the Excel file, named checklist.xlsx, to allow for accurate marking of your assignment. 
Criteria for marking 
 Documentation – 30% 
o Submit the trained weights of your best network (name it as best_weights.txt) 
o Generate a graph of the performance of your best performing network (MSE vs. 
Epochs) on the training set and test set. 
o Generate a confusion matrix of your best network 
o fill-up the Excel file, named checklist.xlsx
o fill-up the Excel file, named best_network_configuration.xlsx
o provide a short user guide for your program 
 System implementation – 70% 
Nothing follows. 
N.H.Reyes 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:DATA 2100代寫、代做Python語言編程
  • 下一篇:ME5701程序代寫、代做Matlab設計編程
  • ·代寫2530FNW、代做Python程序語言
  • ·代寫CIS5200、代做Java/Python程序語言
  • ·LCSCI4207代做、Java/Python程序代寫
  • ·代寫COP3502、Python程序設計代做
  • ·代做MLE 5217、代寫Python程序設計
  • ·代寫ISAD1000、代做Java/Python程序設計
  • ·代做COMP3811、C++/Python程序設計代寫
  • ·代寫SCIE1000、代做Python程序設計
  • ·代寫comp2022、代做c/c++,Python程序設計
  • ·CVEN9612代寫、代做Java/Python程序設計
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    国产精品腿扒开做爽爽爽挤奶网站| 国内黄色精品| 日韩一级不卡| 亚洲1区在线观看| 欧美在线观看天堂一区二区三区| 黄色成人在线网址| 综合欧美亚洲| 99久热在线精品视频观看| 国产不卡人人| 在线亚洲国产精品网站| 精品一区二区三区的国产在线观看| 欧美日一区二区在线观看| 色网在线免费观看| 亚洲一级在线| 欧美一区二区三区激情视频| 精品久久国产一区| 国产精品观看| 中文字幕日本一区二区| 视频在线观看一区| 免费不卡中文字幕在线| 综合成人在线| 亚洲深夜福利在线观看| 99精品欧美| 91精品国产经典在线观看| 免费成人在线视频观看| 午夜视频精品| 在线日韩电影| 精品国产一区二区三区av片| 啪啪亚洲精品| 亚洲三级观看| 日一区二区三区| 深夜视频一区二区| 亚洲欧洲高清| 国产美女高潮在线| 色男人天堂综合再现| 亚洲一区视频| 国产精品女主播一区二区三区| 精品在线99| 久久久蜜桃一区二区人| 欧美三区在线| 欧美2区3区4区| 日韩成人在线看| 久久精品九色| 经典三级久久| 亚洲2区在线| 7777精品| 国产精品极品在线观看| 一区二区三区视频播放| 日日狠狠久久偷偷综合色| 国产一区二区三区四区五区传媒 | 亚洲四虎影院| 欧产日产国产精品视频| 9999国产精品| 大桥未久在线视频| yellow在线观看网址| 国产中文在线播放| 欧美wwwww| 超碰超碰人人人人精品| 亚洲性色av| 99只有精品| 国产乱码精品| 亚洲欧美综合久久久| 一级欧美视频| 精品视频一二| 一区二区三区四区视频免费观看| 亚洲小说春色综合另类电影| 精品一区二区三区的国产在线观看| 精品国产一区二区三区噜噜噜| 久久久久欧美精品| 欧美高清不卡| 美女精品在线观看| 日韩精品诱惑一区?区三区| 欧美特黄aaaaaaaa大片| 久久精品国产99久久6| 欧美日本一区| 婷婷五月色综合香五月| 9l亚洲国产成人精品一区二三| 丁香婷婷成人| 精品日本12videosex| 国产亚洲精品久久久久婷婷瑜伽| 日本一二区不卡| 欧美综合影院| 国内综合精品午夜久久资源| 精品国产亚洲一区二区三区| 色综合www| 日韩网站在线| 亚洲十八**毛片| 看片网站欧美日韩| 亚洲bt欧美bt精品777| 中文无码日韩欧| 波多野结衣的一区二区三区| 老牛嫩草一区二区三区日本| 日韩免费看片| 国产精品国码视频| 亚洲国产欧美在线观看| 图片区亚洲欧美小说区| 成人影院在线| 三级成人在线视频| 欧美1区2区3| 欧美网站在线| 日韩av免费| 成人黄色91| 久久久影院免费| 蜜桃视频第一区免费观看| 久久国产视频网| 香蕉国产成人午夜av影院| 欧美不卡在线| 欧美7777| 国产伦精品一区二区三区千人斩| 精品免费av| 免费一级欧美片在线观看| 国产欧美在线| 国产精品网站在线看| 午夜一区在线| 日本欧美一区二区三区| 国产一区二区三区亚洲| 首页综合国产亚洲丝袜| 麻豆国产欧美一区二区三区| 中文无码日韩欧| 免费av成人在线| 久久久久观看| 国产综合精品| 亚洲精品69| 98视频精品全部国产| 三级欧美在线一区| 日本sm残虐另类| 激情久久久久久久| 亚洲va中文在线播放免费| 亚洲系列另类av| 香蕉成人久久| 91国产一区| 黑丝一区二区| 日日骚欧美日韩| 美女主播精品视频一二三四| 在线天堂新版最新版在线8| 欧美欧美在线| 中国女人久久久| 综合久久99| 一本一本久久a久久综合精品| 欧美在线精品一区| 成人久久综合| 色999韩欧美国产综合俺来也| 国产精品白浆| 精品日韩视频| 成人毛片在线| 国产91欧美| 亚洲韩日在线| 青青草国产成人99久久| 欧美午夜精彩| 麻豆成人在线观看| 免费视频国产一区| 乱一区二区av| 91超碰国产精品| 亚洲欧洲专区| 三级欧美韩日大片在线看| 日本一区福利在线| 免费成人在线观看视频| 日韩av一级片| 日韩欧美精品| 久久久久久9| 亚洲国产片色| 午夜亚洲性色福利视频| 亚洲香蕉视频| 日韩电影二区| 亚洲不卡av不卡一区二区| 青青草97国产精品免费观看无弹窗版 | 美女国产一区二区三区| 亚洲经典自拍| 亚洲国产欧美日韩在线观看第一区| 久热综合在线亚洲精品| 精品亚洲a∨一区二区三区18| 香蕉伊大人中文在线观看| 色综合www| 亚洲三级网站| 蜜桃视频一区二区| 成人自拍在线| 日韩精品视频网站| 视频一区二区国产| 视频欧美一区| 免费亚洲视频| 丝袜国产日韩另类美女| 亚洲精选av| 欧美日本一区| 手机在线观看av| 欧美成人久久| 日产国产欧美视频一区精品| 亚洲国产精选| 亚洲在线播放| 欧美成人专区| 高清一区二区中文字幕| 深夜福利视频一区二区| 欧美成人精品| 69精品国产久热在线观看| 一区二区动漫| 日产午夜精品一线二线三线| 国产劲爆久久| 99精品美女视频在线观看热舞| 天堂av在线网| 99国内精品| 久久久久国产精品一区二区|