加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫 MSE 609、代做 Java,C++設計程序
代寫 MSE 609、代做 Java,C++設計程序

時間:2024-11-11  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Instructions:
MSE 609 Quantitative Data Analysis Midterm 3
1. Prepare your answers using Jupyter Notebook or R Markdown, and submit as a PDF or HTML document. Ensure your submission is clear, organized, and well-formatted.
2. Use complete sentences when explaining, commenting, or discussing. Provide thorough answers within the context of the problem for full credit.
3. Show all work and reasoning in your submission. Your grade will depend on the clarity, detail, and correctness of your answers.
4. The exam is open book and open notes. You may use textbooks, course notes, and approved coding tools (e.g., Jupyter Notebook or R Studio). However, using generative AI tools (e.g., large language models) is not permitted.
5. Total points = 100.
6. The exam duration is 1 week. Submit your completed exam by Thursday, November 14, at 11:59 PM. Late submissions will not be accepted.
7. Upload your submission to Crowdmark in PDF or HTML format.
Good Luck!
Problem 1 2 3 Total Max 42 40 18 100
   Points
 1

1. (42 points total) The data file question1.csv contains information about the economies of 366 metropolitan areas (MSAs) in the United States for the year 2006. The dataset includes variables such as the population, the total value of all goods and services produced for sale in the city that year per person (“per capita gross metropolitan product”, pcgmp), and the share of economic output coming from four selected industries.
a. (1 points) Load the data file and confirm that it contains 366 rows and 7 columns. Explain why there are seven columns when only six variables are described in the dataset.
b. (1 points) Compute summary statistics for the six numerical columns.
c. (4 points) Create univariate exploratory data analysis (EDA) plots for population and per capita GMP. Use histograms and boxplots, and describe the distributions of these variables.
d. (4 points) Generate a bivariate EDA plot showing per capita GMP as a function of population. Describe the relationship observed in the plot.
e. (3 points) Using only basic functions like mean, var, cov, sum, and arithmetic operations, cal- culate the slope and intercept of the least-squares regression line for predicting per capita GMP based on population.
f. (3 points) Compare the slope and intercept from your calculations to those returned by the lm function in R. Are they the same? Should they be?
g. (3 points) Add both regression lines to the bivariate EDA plot. Comment on the fit and whether the assumptions of the simple linear regression model appear to hold. Are there areas where the fit seems particularly good or poor?
h. (3 points) Identify Pittsburgh in the dataset. Report its population, per capita GMP, the per capita GMP predicted by your model, and the residual for Pittsburgh.
i. (2 points) Calculate the mean squared error (MSE) of the regression model. That is, compute n1 􏰀ni=1 e2i , where ei = Yi − Yˆi is the residual.
j. (2 points) Discuss whether the residual for Pittsburgh is large, small, or typical relative to the MSE.
2

k. (4 points) Create a plot of residuals (vertical axis) against population (horizontal axis). What pattern should you expect if the assumptions of the simple linear regression model are valid? Does the plot you generated align with these assumptions? Explain.
l. (3 points) Create a plot of squared residuals (vertical axis) against population (horizontal axis). What pattern should you expect if the assumptions of the simple linear regression model are valid? Does the plot you generated align with these assumptions? Explain.
m. (3 points) Carefully interpret the estimated slope in the context of the actual variables involved in this problem, rather than using abstract terms like ”predictor variable” or ”X”.
n. (3 points) Using the model, predict the per capita GMP for a city with a population that is 105 higher than Pittsburgh’s.
o. (3 points) Discuss what the model predicts would happen to Pittsburgh’s per capita GMP if a policy intervention were to increase its population by 105 people.
3

2. (40 points total) In real-world data analysis, the process goes beyond simply generating a model and reporting the results. It’s essential to accurately frame the problem, select appropriate analytical methods, interpret the findings, and communicate them in a way that is accessible to an audience that may not be familiar with advanced statistical methods.
Research Scenario: Coral shells, known scientifically as Lithoria crusta, are marine mollusks that inhabit rocky coastal areas. Their meat is highly valued as a delicacy, eaten raw or cooked in many cultures. Estimating the age of Lithoria crusta, however, is difficult since their shell size is influenced not only by age but also by environmental factors, such as food supply. The traditional method for age estimation involves applying stain to a shell sample and counting rings under a microscope. A team of researchers is exploring whether certain physical characteristics of Lithoria crusta, particularly their height, might serve as indicators of age. They propose using a simple linear regression model with normally distributed errors to examine the association between shell height and age, positing that taller shells are generally older. The dataset for this research is available at question2.csv.
a. (3 points) Load the data. Describe the research hypothesis.
b. (4 points) Examine the two variables individually (univariate). Find summary measures for each (mean, variance, range, etc.). Graphically display each and describe your graphs. What is the unit of height?
c. (4 points) Generate a labeled scatterplot of the data. Describe interesting features or trends you observe.
d. (2 points) Fit a simple linear regression to the data, predicting the number of rings using the height of the Lithoria crusta.
e. (4 points) Generate a labeled scatterplot that displays the data and the estimated regression function line (you may add this to the previous scatterplot). Describe the fit of the line.
f. (5 points) Perform diagnostics to assess whether the model assumptions are met. If not, appro- priately transform the height and/or number of rings and re-fit your model. Justify your decisions and re-check your diagnostics.
g. (4 points) Interpret your final parameter estimates in context. Provide 95% confidence intervals for β0 and β1, and interpret these in the context of the problem.
h. (3 points) Determine whether there is a statistically significant relationship between the height
4

and the number of rings (and hence, the age) of Lithoria crusta. Explain your findings in the context of the problem.
i. (4 points) Find the point estimate and the 95% confidence interval for the average number of rings for a Lithoria crusta with a height of 0.128 (in the same unit as other observations of height). Interpret this in the context of the problem.
j. (4 points) We are interested in predicting the number of rings for a Lithoria crusta with a height of 0.1** (in the same unit as other observations of height). Find the predicted value and a 99% prediction interval.
k. (3 points) What are your conclusions? Identify a key finding and discuss its validity. Can you come up with any reasons for what you observe? Do you have any suggestions or recommen- dations for the researchers? How could this analysis be improved? (Provide 6–8 sentences in total.)
5

3. (18 points total) Load the stackloss data:
  data(stackloss)
  names(stackloss)
  help(stackloss)
a. (3 points) Plot the data and describe any noticeable patterns or trends.
b. (5 points) Fit a multiple regression model to predict stack loss from the three other variables. The model is
Y =β0 +β1X1 +β2X2 +β3X3 +ε
where Y is stack loss, X1 is airflow, X2 is water temperature, and X3 is acid concentration. Sum- marize the results of the regression analysis, including the estimated coefficients and their interpre- tation.
c. (3 points) Construct ** percent confidence intervals for the coefficients of the linear regression model. Interpret these intervals in the context of the problem.
d. (3 points) Construct a 99 percent prediction interval for a new observation when Airflow = 58, Water temperature = 20, and Acid = 86. Interpret the prediction interval.
e. (4 points) Test the null hypothesis H0 : β3 = 0. What is the p-value? Based on a significance level of α = 0.10, what is your conclusion? Explain your reasoning.
6

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代寫 CP3405、代做 Python/C++語言編程
  • 下一篇:代做 CS 6613、代寫 c++,python 程序語言
  • ·代寫 CS 336、代做 java/c++設計程序
  • ·代做CMPT 401、代寫 c++設計程序
  • ·代做CS 259、Java/c++設計程序代寫
  • ·CSCI1120代寫、代做C++設計程序
  • ·COMP30026代做、C/C++設計程序代寫
  • ·MAST30027代做、Java/C++設計程序代寫
  • ·代寫COMP30026、C++設計程序代做
  • ·COS110代做、代寫C/C++設計程序
  • ·DDES9903代做、代寫Python/c++設計程序
  • ·代寫COMP282、代做C++設計程序
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    91精品一区二区三区综合在线爱| 日韩成人综合网站| 超碰一区二区三区| 欧美亚洲一区二区三区| 日韩中文字幕1| 久久经典综合| 亚洲人成网站77777在线观看| 日本综合久久| 国产一级久久| 日韩精品欧美| 日韩电影在线观看电影| 欧美一级一区| 欧美亚洲黄色| av免费不卡国产观看| 一区在线视频| 私拍精品福利视频在线一区| 奇米色欧美一区二区三区| 久久一区激情| 福利精品一区| 国产精品久久久久一区二区三区厕所| 欧美粗暴jizz性欧美20| caoporn成人免费视频在线| 国产精久久一区二区| 日韩精品亚洲一区| 国产经典一区| 日韩大片在线观看| 免费观看在线综合色| 午夜精品免费| 亚洲欧美伊人| 91精品综合| 欧美日韩导航| 极品尤物一区| 亚洲午夜免费| 日韩在线观看一区二区三区| 精品一区二区三区亚洲| 亚洲国产精品一区| 久久精品一区| 久久一综合视频| 国产日韩一区二区三区在线| 久久av影院| 国产亚洲精品精品国产亚洲综合| 国模套图日韩精品一区二区| 蜜乳av一区二区| 免费国产亚洲视频| 久久性天堂网| 蜜桃一区二区三区在线| 免费在线观看一区二区三区| 久久国产精品久久久久久电车| 亚洲激精日韩激精欧美精品| 国产一区日韩欧美| 天天影视欧美综合在线观看| 伊人久久大香线蕉av不卡| 99国产精品免费视频观看| 视频福利一区| 在线一级成人| 9国产精品视频| 美女被久久久| 98精品视频| 78精品国产综合久久香蕉| 先锋欧美三级| 日本sm残虐另类| 欧美大片91| 麻豆视频久久| 欧美成人专区| 亚欧美无遮挡hd高清在线视频| 不卡在线一区二区| 久久一二三区| 亚洲成人不卡| 日韩综合小视频| 国产精品1区| 99久久香蕉| 久久激情电影| 性欧美暴力猛交另类hd| 春色校园综合激情亚洲| 精品日本视频| 欧美激情四色| 麻豆精品国产| jvid福利在线一区二区| 羞羞答答国产精品www一本| 久草在线中文最新视频| 精品久久毛片| 欧美激情在线免费| 玖玖玖免费嫩草在线影院一区| 亚洲夜间福利| 免费久久99精品国产| 欧美日韩卡一| 国产精品亚洲欧美一级在线 | 国产精品不卡| 91另类视频| 国产麻豆精品久久| 欧美亚洲国产日韩| 日韩一级网站| 久久xxx视频| 欧美中文高清| 乱亲女h秽乱长久久久| 日韩视频精品在线观看| 日韩欧美视频专区| 久久亚洲道色| 久久久久久久久99精品大| 老鸭窝毛片一区二区三区| 欧美视频精品| 日本中文字幕一区二区有限公司| 欧美一区自拍| 欧美1级片网站| 日本aⅴ亚洲精品中文乱码| 天堂av一区| 香蕉久久夜色精品国产| 日本中文字幕视频一区| 久久久久久亚洲精品美女| 羞羞答答成人影院www| 男女羞羞在线观看| 亚洲理论电影| 在线一区视频| 国产日韩视频| 乱亲女h秽乱长久久久| 欧美肥老太太性生活| 2019中文亚洲字幕| 亚洲国产影院| 四虎在线精品| 99国产精品久久一区二区三区 | 欧美韩日一区| 一区二区三区国产精华| 性欧美xxxx免费岛国不卡电影| 黄色在线网站噜噜噜| 综合欧美精品| 免费视频一区三区| 欧美一区二区三区久久精品| 国产成人在线中文字幕| 蜜臀av性久久久久蜜臀aⅴ| 国产精品成人一区二区网站软件| 欧美成人基地| 亚洲成人精品综合在线| 亚洲日本va| 亚洲三级欧美| 日韩av网站免费在线| 视频一区二区三区中文字幕| 欧美日本久久| 99国产精品视频免费观看一公开| 美女视频黄久久| 激情欧美丁香| 国产精品综合色区在线观看| 久久婷婷激情| 99精品久久久| 加勒比久久综合| 欧美日韩亚洲一区二区三区在线| 欧美日韩精品在线一区| 99精品国产在热久久婷婷| 久久蜜桃资源一区二区老牛| 日本久久二区| 亚洲二区精品| 亚洲国产一区二区三区高清| 牛夜精品久久久久久久99黑人| 亚洲乱码久久| 国产精品人人爽人人做我的可爱| 欧美区日韩区| 午夜在线a亚洲v天堂网2018| 国产欧美日韩一区二区三区四区| 蜜臀av性久久久久蜜臀aⅴ四虎| 无码少妇一区二区三区| 亚洲精品福利电影| 欧美视频亚洲视频| 精品国产美女a久久9999| 自拍欧美一区| 国产一区日韩| 樱花草涩涩www在线播放| 久草精品视频| 久久久伦理片| 蜜臀av一区二区在线免费观看| 麻豆国产一区| 欧美在线91| 久久亚洲图片| 粉嫩久久久久久久极品| 久久中文精品| 日本一本不卡| 成人毛片在线| 高清精品久久| 色在线免费观看| 欧美一区三区| 亚洲视频分类| 久久精品理论片| 首页国产欧美日韩丝袜| 欧美交a欧美精品喷水| 日本91福利区| 日本不卡网站| 激情欧美一区| 精品亚洲二区| 青娱乐精品在线视频| 丝袜美腿亚洲一区二区图片| 91精品啪在线观看国产手机| 欧美在线二区| 国产高潮在线| 九九综合久久| 伊色综合久久之综合久久| 欧美一级一区| 国产调教在线| 一区视频在线看| 97人人澡人人爽91综合色| 91精品一区| 国产成人亚洲一区二区三区| 免费观看在线综合|