加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS-UY 4563、Python程序語言代做
代寫CS-UY 4563、Python程序語言代做

時間:2024-12-12  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Final Project
CS-UY 4563 - Introduction to Machine Learning
Overview
• Partner with one student and select a machine learning problem of your choice.
• Apply the machine learning techniques you’ve learned during the course to
your chosen problem.
• Present your project to the class at the semester’s end.
Submission Requirements on Gradescope
Submit the following on Gradescope by the evening before the first presentation (exact
date to be announced):
• Presentation slides.
• Project write-up (PDF format).
• Project code as a Jupyter Notebook. If necessary, a GitHub link is acceptable.
• If using a custom dataset, upload it to Gradescope (or provide a GitHub link, if
necessary).
1Project Guidelines
Write-Up Requirements
Your project write-up should include the following:
1. Introduction: Describe your data set and the problem you aim to solve.
2. Perform some unsupervised analysis:
• Explore pattern or structure in the data using clustering and dimensionality (e.g
PCA).
• Visualize the training data
1
:
– Plot individual features to understand their distribution (e.g., histograms
or density plots).
– Plot individual features and their relationship with the target variable.
– Create a correlation matrix to analyze relationships between features.
• Discuss any interesting structure is present in the data. If you don’t find any
interesting structure, describe what you tried.
3. Supervised analysis: Train at least three distinct learning models
2 discussed in
the class (such as Linear Regression, Logistic Regression, SVM, Neural Networks,
CNN).
3
For implementation, you may:
• Use your own implementation from homework or developed independently.
• Use libraries such as Keras, scikit-learn, or TensorFlow.
For each model,
4 you must:
• Try different feature transformations. You should have at least three transformations.
 For example, try the polynomial, PCA, or radial-basis function kernel.
For neural networks, different architectures (e.g., neural networks with varying
numbers of layers) can also be considered forms of feature transformations, as
they learn complex representations of the input data.
• Use different regularization techniques. You should have at least 6 different
regularization values per model
1Do not look at the validation or test data.
2You can turn a regression task into a classification task by binning, or for the same dataset, select a
different feature as the target for your model. Or you can use SVR.
3
If you wish to use a model not discussed in class, you must discuss it with me first, or you will not
receive any points for that model.
4Even if you get a very high accuracy, perform these transformations to see what happens.
24. Table of Results:
• Provide a table with training accuracy and validation metrics for every model.
Include results for the different parameter settings (e.g., different regularization
values).
– For classification include metrics such as precision/recall.
– For regression modes, report metrics like MSE, R2
. For example, suppose
you’re using Ridge Regression and manipulating the value of λ. In that
case, your table should contain the training and validation accuracy for
every lambda value you used.
• Plot and analyze how performance metrics (like accuracy, precision, recall, MSE)
change with different feature transformations, hyperparameters (e.g.regularization
settings, learning rate).
5. Analytical Discussion:
• Analyze the experimental results and explain key findings. Provide a chart of
your key findings.
• Highlight the impact of feature transformations, regularization, and other hyperparameters
 on the model’s performance. Refer to the graphs provide in earlier
sections to support your analysis. Focus on interpreting:
– Whether the models overfit or underfit the data.
– How bias and variance affect performance, and which parameter choices
helped achieve better generalization.
Presentation Guidelines
• You and your partner will give a six-minute presentation to the class.
• Presentations will be held during the last 2 or 3 class periods and during the final
exam period for this class. You will be assigned a day for your presentation. If we
run out of time the day you are to present your project, you will present the next
day reserved for presentations.
• Attendance during all presentations is required. A part of your project grade
will be based on your attendance for everyone else’s presentation.
Important Notes on Academic Integrity
• Your submission will undergo plagiarism checks.
• If we suspect you of cheating, you will receive 0 for your final project grade. See the
syllabus for additional penalties that may be applied.
3Dataset Resources
Below are some resources where you can search for datasets. As a rough guideline, your
dataset should have at least 200 training examples and at least 10 features. You
are free to use these resources, look elsewhere, or create your own dataset.
• https://www.kaggle.com/competitions
• https://www.openml.org/
• https://paperswithcode.com/datasets
• https://registry.opendata.aws/
• https://dataportals.org/
• https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research
• https://www.reddit.com/r/datasets/
• https://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public
Modifications
• If you have a project idea that doesn’t satisfy all the requirements mentioned above,
please inform me, and we can discuss its viability as your final project.
• If you use techniques not covered in class, you must demonstrate your understanding
of these ideas.
Brightspace Submissions Guidelines
• Dataset and Partner: Submit the link to your chosen dataset and your partner’s
name by October 30th.
• Final Submissions: Upload your presentation slides, project write-up, and code to
Gradescope by the evening before the first scheduled presentation. The exact date
will be announced once the total number of projects is confirmed. (I expect the due
date to be December 4th or December 9th.)
Potential Challenges and Resources
As you work with your dataset, you may encounter specific challenges that require additional
 techniques or tools. Below are some topics and resources that might be useful.
Please explore these topics further through online research.
4• Feature Reduction: Consider using PCA (which will be covered in class). PCA is
especially useful when working with SVMs, as they can be slow with high-dimensional
data.
If you choose to use SelectKBest from scikit-learn, you must understand why it works
before you use it.
• Creating Synthetic Examples: When using SMOTE or other methods to generate
synthetic data, ensure that only real data is used in the validation and test sets.
- If using synthetic data, make sure your validation set and test set mirrors the true
class proportions from the original dataset. A balanced test set for naturally unbalanced
 data can give misleading impressions of your model’s real-world performance.
For more details, see: Handling Imbalanced Classes
• Working with Time Series Data: For insights on working with time series data,
visit: NIST Handbook on Time Series
• Handling Missing Feature Values:
– See Lecture 16 at Stanford STATS 306B
– Techniques to Handle Missing Data Values
– How to Handle Missing Data in Python
– Statistical Imputation for Missing Data
• Multiclass Classification:
– Understanding Softmax in Multiclass Classification
– Precision and Recall for Multiclass Metrics
• Optimizers for Neural Networks: You may use Adam or other optimizers for
training neural networks.
• Centering Image Data with Bounding Boxes: If you are working with image
data, you are allowed to use bounding boxes to center the objects in your images. You
can use libraries like OpenCV (‘cv2’).
Tips
Don’t forget to scale your data as part of preprocessing. Be sure to document any modifications
 you made, including the scaling or normalization techniques you applied.
The following resource might be helpful. Please stick to topics we discussed in class or
those mentioned above: CS229: Practical Machine Learning Advice

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp


 

掃一掃在手機打開當前頁
  • 上一篇:菲律賓萊特省旅游經濟好嗎(景點推薦)
  • 下一篇:ENG6編程代寫、代做MATLAB語言程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    亚洲人体在线| zzzwww在线看片免费| 国产欧美日韩一区二区三区四区| 成人黄色av| 99精品视频在线| 亚欧洲精品视频在线观看| 欧美亚洲综合视频| 性欧美精品高清| 99精品视频在线观看播放| 国产精品亚洲欧美日韩一区在线| 日韩中文欧美| 丝袜美腿亚洲一区| 欧美日韩在线二区| 国产日韩欧美中文在线| 国内一区二区三区| 免费成人在线电影| 日韩一区欧美二区| 香蕉人人精品| 97久久综合区小说区图片区| 影音先锋在线一区| 成人在线视频观看| av资源网在线播放| 国产精品毛片在线| 99久久精品国产亚洲精品| **爰片久久毛片| 国产欧美日韩一区二区三区四区| 日精品一区二区三区| 日韩一区二区在线| 老妇喷水一区二区三区| 亚洲国产老妈| 久久在线免费| 久久久777| 北条麻妃一区二区三区在线观看| 最新国产一区| 综合国产在线| 亚洲精选国产| 麻豆精品精品国产自在97香蕉| 亚洲精品555| 男人av在线播放| 日韩欧美自拍| 欧美不卡高清一区二区三区 | 免播放器亚洲| 黄色欧美日韩| 99亚洲一区二区| 伊人久久久大香线蕉综合直播 | 欧美日本精品| 欧美激情偷拍| 中文字幕亚洲综合久久五月天色无吗'' | 国产精品伦一区二区| 日韩免费久久| 欧美精品资源| 日本亚洲欧洲无免费码在线| 欧美性生活一级| 欧美一级做一级爱a做片性| 亚洲成人va| 成人在线视频观看| 久久精品二区亚洲w码| 日韩成人在线电影| 麻豆成人av在线| 综合久草视频| 亚洲成人一品| 98视频精品全部国产| 福利在线一区| 亚洲天堂男人| 一本久道久久久| 蜜桃视频在线一区| 欧美天堂视频| 麻豆国产91在线播放| av在线亚洲一区| 精品一级视频| 精品网站aaa| 伊人久久综合| 国产极品在线观看| 欧美天堂一区| 麻豆精品视频在线观看| 国产成人精品999在线观看| 日韩欧美影院| 99精品综合| 国产精品嫩草99av在线| 麻豆理论在线观看| 国产成人免费| 国产精品中文| 成人爽a毛片| 亚洲欧洲视频| 日韩一区三区| 午夜天堂精品久久久久| 精品国产一区二区三区性色av| av综合网址| 在线成人激情| 日韩国产欧美一区二区| 国产日韩欧美| 久久99高清| 久久精品国产99久久| 鲁大师影院一区二区三区| 免费高潮视频95在线观看网站| 日韩精品成人一区二区三区| 精品一区二区三区视频在线播放| 超碰成人在线观看| 亚洲一区二区三区四区五区午夜 | 91成人在线网站| 国产suv精品一区| 黑人一区二区| 亚洲成人看片| 亚洲人成精品久久久 | 999久久久免费精品国产| 视频一区视频二区中文字幕| 青青久久精品| 偷拍自拍亚洲色图| 欧美综合在线视频观看| 亚洲国产成人二区| 宅男噜噜噜66国产精品免费| 精品国产午夜肉伦伦影院| 亚洲欧美bt| 日韩精品第二页| 久久伊人影院| 亚洲尤物影院| 日本不卡视频在线| 日韩精品一区二区三区免费观看| 免费xxxx性欧美18vr| 影音先锋亚洲电影| 91精品天堂福利在线观看| 激情国产在线| 久久99国内| 一本色道精品久久一区二区三区| 亚洲高清国产拍精品26u| 日韩mv欧美mv国产网站| 欧美网站在线| 国产情侣久久| 久久精品高清| 福利一区视频| 精品国产一区二区三区噜噜噜| 91一区二区| 日本一区福利在线| 国产亚洲亚洲| 综合久久av| 国产精品人人爽人人做我的可爱| 欧美aaaaa成人免费观看视频| 精品视频高潮| 国产亚洲一区二区手机在线观看 | 日韩成人免费在线| 免费xxxx性欧美18vr| 国产美女视频一区二区| 中国女人久久久| 亚洲另类黄色| 欧美日韩国产高清| 亚洲精品乱码| 好吊日精品视频| 一区二区日韩欧美| 亚洲一区欧美二区| 韩国一区二区三区视频| 乱码第一页成人| 亚洲动漫精品| 国产精品vvv| 伊色综合久久之综合久久| 日韩欧美一区二区三区免费看| 日韩中文字幕| 国产激情欧美| 欧美aa国产视频| 一区二区免费不卡在线| 蜜桃久久av| 日本在线视频一区二区三区| 超碰在线cao| 里番精品3d一二三区| 国产精品久久777777毛茸茸| 欧美.www| 欧美一区在线观看视频| 丝袜美腿成人在线| 99国产精品免费网站| 日韩综合久久| 悠悠资源网久久精品| 久久超碰99| 91精品影视| 伊人久久大香线| 亚洲丝袜啪啪| 成人一区视频| 国产精品普通话对白| 日韩免费成人| 国产精品99久久久久久董美香 | 99精品视频在线免费播放| 免费人成黄页网站在线一区二区| 日韩av在线免费观看不卡| 777午夜精品电影免费看| 欧美裸体在线版观看完整版| 国产欧美日韩视频在线| 日韩欧美网站| 女人色偷偷aa久久天堂| 九九99久久精品在免费线bt| av在线日韩| 国产精品毛片| 精品久久久中文字幕| 中文字幕一区二区三三 | 亚洲激情视频| 91精品国产乱码久久久竹菊| 久久中文在线| 97在线精品| 1024精品久久久久久久久| 精品国产亚洲一区二区在线观看 | 尤物网精品视频| 精品一区电影| 国产一区二区三区电影在线观看|