加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

COP 3402 代做、代寫 c/c++,Python 程序
COP 3402 代做、代寫 c/c++,Python 程序

時間:2025-02-01  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



Homework 1: P-Machine
COP 3402: Systems Software
Spring 2025
See Webcourses  for due dates.
 
Purpose
In this homework you will form a team and implement a virtual machine called the P-machine.
Teams must be either 1 person team or 2 people team.
Directions
(100 points) Implement and submit the P-machine as described in the rest of this document.
 
For the implementation, your code must be written in ANSI standard C and must compile with gcc and run correctly on Eustis. We recommend using the flag -Wall and fixing all warnings.
What to Read
Our recommended book is Systems Software: Essential Concepts (by Montagne) in which we recommend reading chapters 1-3.
 
In this assignment, you will implement a virtual machine (VM) known as the P-machine (PM/0). 
 
P-Machine Architecture
The P-machine is a stack machine that conceptually has one memory area called the process address space (PAS). The process address space is divided into three contiguous segments: The first 10 locations, called “unused”, the “text”, which contains the instructions for the VM to execute and the “stack,” which is organized as a data-stack to be used by the PM/0 CPU.
Registers
The PM/0 has a few built-in registers used for its execution: The registers are named:
• base pointer (BP), which points to the base of the current activation record
• stack pointer (SP), which points to the current top of the stack. The stack grows downwards., 
• program counter (PC), which points to the next instruction to be executed.
• Instruction Register (IR), which store the instruction to be executed
The use of these registers will be explained in detail below. The stack grows downwards.
Instruction Format
The Instruction Set Architecture (ISA) of the PM/0 hasinstructions that each have three components, which are integers (i.e., they have the C type int) named as follows.
OP​is the operation code.
    L​indicates the lexicographical level (We will give more details on L below)
M​depending of the operators it indicates:
​- A number (when OP is LIT or INC).
​- A program address (when OP is JMP, JPC, or CAL).
​- A data address (when OP is LOD, STO)
​- The identity of the arithmetic/relational operation associated to the OPR op-code. 
    (e.g. OPR 0 2 (ADD) or OPR 0 4 (MUL))
    
The list of instructions for the ISA can be found in Appendix A and B.
P-Machine Cycles
The PM/0 instruction cycle conceptually does the following for each instruction: 
 
The PM/0 instruction cycle is carried out in two steps. The first step is the fetch cycle, where the instruction pointed to by the program counter (PC) is fetched from the “text” segment, placed in the instruction register (IR) and the PC is incremented to point to the next instruction in the code list. In the second stepthe instruction in the IR is executed using the “stack” segment. (This does not mean that the instruction is stored in the “stack segment.”)
Fetch Cycle:
1.- IR.OP ß pas[pc]
​IR.L   ß pas[pc + 1]  
​IR.M  ß pas[pc + 2]
​(note that each instruction need 3 entries in array “TEXT”. 
2.- (PCß PC + 3). 
 
Execute Cycle:
The op-code (OP) component in the IR register (IR.OP) indicates the operation to be executed. For example, if IRencodes the instruction “2 0 2”, then the machine adds the top two elements of the stack, popping them off the stack in the process, and stores the result in the top of the stack (so in the end sp is one less than it was at the start). Note that arithmetic overflows and underflows happen as in C int arithmetic.  ​​​​
PM/0 initial/Default Values
When the PM/0 starts execution. 
 
BP == 499, SP == 500, and PC == 10; 
 
This means that execution starts with the “text segment” element 10. Similarly, the initial “stack” segment values are all zero (BP=499 and SP = BP + 1).
 
The figure bellow illustrates the process address space:
 
 
                                  ​ ​ Last instruction    ​​ ​​​               BP   SP
     0              10                                                    
PAS    UNUSED              TEXT    OP    L    M                      STACK              ??? 
                                                                 499    500     
                    PC                                                            
 
Size Limits
 
Initial values for PM/0 CPU registers are:
BP = 499 
SP = BP + 1; 
PC = 10;
Initial process address space values are all zero:  
pas[0] =0, pas[1] =0, pas[3] =0…..[n-1] = 0. 
Constant Values:
ARRAY_SIZE is 500
 
 
Note: Be aware that in PM/0 the stack is growing downwards
Assignment Instructions and Guidelines: 
1. The VM must be written in C and must run on Eustis3. If it runs in your PC but not on Eustis, for us it does not run.
2. The input file name should be read as a command line argument at runtime, for example: $ ./a.out input.txt (A deduction of 5 points will be applied to submissions that do not implement this).
3. Program output should be printed to the screen, and should follow the formatting of the example in Appendix C. A deduction of 5 points will be applied to submissions that do not implement this.
4. Submit to Webcourses:
a) A readme text file indicating how to compile and run the VM
b) The source code of your PM/0 VM which should be named “vm.c”
c) A signed sheet indicating the contribution of each team member to the project.
d) Student names should be written in the header comment of each source code file, in the readme, and in the comments of the submission
e) Do not change the ISA. Do not add instructions or combine instructions. Do not change the format of the input. If you do so, your grade will be zero.
f) Include comments in your program. If you do not comments, your grade will be zero.
g) Do not implement each VM instruction with a function. If you do, a penalty of -100 will be applied to your grade. You should only have functions: main, base, auxiliary functions to print but you must not use functions to implement instructions or FETCH. (Appendix D).
h) The team member(s) must be the same for all projects. In case of problems within the team. The team will be split and each member must continue working as a one-member team for all other projects.
i) On late submissions:
o One day late 10% off.
o Two days late 20% off.
o Submissions will not be accepted after two days.
o Resubmissions are not accepted after two days.
o Your latest submission is the one that will be graded.
 
We will be using a bash script to test your programs. This means your program should follow the output guidelines listed (see Appendix C for an example). You don’t need to be concerned about whitespace beyond newline characters. We use diff -w.
 
 
 
 
 
 
Rubric:
If you submit a program from another semester or we detect plagiarism your grade is F for this course. 
Using functions to implement instructions even if only one is implemented that way, means that your grade will be “zero”.
Pointers and handling of dynamic data structures is not allowed. If you do your grade is “zero”.  Only file pointer is allowed.
-100 – Does not compile
10 – Compiles
25 – Produces lines of meaningful execution before segfaulting or looping infinitely
5 – Follows IO specifications (takes command line argument for input file name and prints output to console)
10 – README.txt containing author names
5 – Fetch cycle is implemented correctly
10 – Well commented source code
5 – Arithmetic instructions are implemented correctly
5 – Read and write instructions are implemented correctly
10 – Load and store instructions are implemented correctly
10 – Call and return instructions are implemented correctly
5 – Follows formatting guidelines correctly, source code is named vm.c
Appendix A 
 
Instruction Set Architecture (ISA) – (eventually we will use “stack” to refer to the    stack segment in PAS)
 
In the following tables, italicized names (such as p) are meta-variables that refer to integers.  If an instruction’s field is notated as “-“, then its value does not matter (we use 0 as a placeholder for such values in examples).
 
ISA:
01   – ​LIT​0, M​​Pushes a constant value (literal) M onto the stack
 
02   – ​OPR​0, M​​Operation to be performed on the data at the top of the stack.​​​ ​​(orreturn from function)
 
03   – ​LOD​L, M​​Load value to top of stack from the stack location at  offset M from L lexicographical levels down
​​​
04   – ​STO​L, M​​Store value at top of stack in the stack location at offset M 
  from L lexicographical levels down
 
05   – ​CAL​L, M​​Call procedure at code index M (generates new 
   Activation Record and PC ß M)
 
06   – ​INC​0, M​​Allocate M memory words (increment SP by M). First three​​​​​are reserved to   Static Link (SL), Dynamic Link (DL),                    ​​​​​and Return Address (RA)
 
07   – ​JMP​0, M​​Jump to instruction M (PC ßM)
 
08   – ​JPC 0, M​​Jump to instruction M if top stack element is 0
 
09   – ​SYS 0, 1​​Write the top stack element to the screen
 
  ​SYS 0, 2​​Read in input from the user and store it on top of the stack 
 
  SYS 0, 3​​End of program (Set “eop” flag to zero)
   
   
   
 
 
 
OP Code Number    OP Mnemonic    L    M    Comment (Explanation)
01    LIT    0    n    Literal push: sp ß sp- 1; pas[sp] ßn 
02    RTN    0    0    Returns from a subroutine is encoded 0 0 0 and restores the caller’s AR:
sp ← bp + 1; bp ← pas[sp - 2];  pc ← pas[sp -3];
03    LOD    n    a    Load value to top of stack from the stack location at offset o from n lexicographical levels down
sp ß sp - 1;
pas[sp] ß pas[base(bp, n) - o];
04    STO    n    o    Store value at top of stack in the stack location at offset o from n lexicographical levels down
pas[base(bp, n) - o] ß pas[sp];
sp = sp +1;
05    CAL    n    a    Call the procedure at code address a, generating a new activation record and setting PC to a:
pas[sp - 1]  ß  base(bp, n); /* static link (SL)
pas[sp - 2]  ß bp;​/* dynamic link (DL)
pas[sp - 3]  ß pc;​ /*return address (RA)​
bp ß sp - 1;
pc ß a;
06    INC    0    n    Allocate n locals on the stack
sp ß sp - n;
07    JMP    0    a    Jump to address a:
PC ← a
08    JPC    0    a    Jump conditionally: if the value in stack[sp] is 0, then jump to a and pop the stack:if (stack[SP] == 0) then { pc (← a; } sp ← sp+1
09    SYS    0    1    Output of the value in stack[SP] to standard output as a character and pop:putc(stack[sp]); sp ← sp+1
(You can use printf if you wish) 
     SYS    0    2    Read an integer, as character value, from standard input (stdin) and store it on the top of the stack.sp ← sp-1; stack[sp] ← getc(); 
(You can use fscanf if you wish)
     SYS    0    3    Halt the program (Set “eop” flag to zero)
 
Appendix B (Arithmetic/Logical Instructions)
 
ISA Pseudo Code
   
 
02 – OPR  0, #​​(1 <= # <= 10)
    
 
​​​​1​ADD​​pas[sp + 1] ß pas[sp + 1] + pas[sp]
​​​​​​​sp ß sp + 1;
 
  2​SUB​​pas[sp + 1] ß pas[sp + 1] - pas[sp]
​​​​​​​sp ß sp + 1;
 
  3​MUL​​pas[sp + 1] ß pas[sp + 1] * pas[sp]
​​​​​​​sp ß sp + 1;
 
  4​DIV​​pas[sp + 1] ß pas[sp + 1] / pas[sp]
​​​​​​​sp ß sp + 1;
 
  5​EQL​​pas[sp + 1] ß pas[sp + 1] == pas[sp]
​​​​​​​sp ß sp + 1;
 
  6​NEQ​​pas[sp + 1] ß pas[sp + 1] != pas[sp]
​​​​​​​sp ß sp + 1;
 
  7​LSS​​pas[sp + 1] ß pas[sp + 1] < pas[sp]
​​​​​​​sp ß sp + 1;
 
  8​LEQ​​pas[sp + 1] ß pas[sp + 1] <= pas[sp]
​​​​​​​sp ß sp + 1;
 
  9​GTR​​pas[sp + 1] ß pas[sp + 1] > pas[sp]
​​​​​​​sp ß sp + 1;
 
  10​GEQ​​pas[sp + 1] ß pas[sp + 1] >= pas[sp]
​​​​​​​sp ß sp + 1;
 
   
 
 
 
 
Appendix C
Example of Execution
 
This example shows how to print the stack after the execution of each instruction.
 
INPUT FILE (In this example the program was stored at memory address zero)
For every line, there must be 3 values representing OP, Land M.
 
7 0 45
7 0 6
6 0 4
1 0 4
1 0 3
2 0 3
4 1 4
1 0 14
3 1 4
2 0 7
8 0 39
1 0 7
7 0 42
1 0 5
2 0 0
6 0 5
9 0 2
5 0 6
9 0 1
9 0 3
 
When the input file (program) is read in to be stored in the text segment starting at location 10 in the process address space, each instruction will need three memory locations to be stored. Therefore, the PC must be incremented by 3 in the fetch cycle.
 
10              13              16              19              22              25              …
7    0    45    7    0    6    6    0    4    1    0    4    1    0    3    2    0    4    etc
 
 
The initial CPU register values for the example in this appendix are:
SP = 500;
BP = SP - 1; 
PC = 10;
IR  = 0 0 0; (a struct or a linear array can be used to implement IR) 
Hint: Each instruction uses 3 array elements and each data value just uses 1 array element. 
 
 
OUTPUT FILE (In this example the program was storedat memory address zero)
Print out the execution of the program in the virtual machine, showing the stack and pc, bp, and sp.
 
NOTE: It is necessary to separate each Activation Record with a bar “|”.  
 
​​​​PC​BP​SP​stack
Initial values:​10​499​500
 
​JMP​0​45​45​499​500​
​INC​0​5​48​499​495​0 0 0 0 0 
Please Enter an Integer: 3
​SYS​0​2​51​499​494​0 0 0 0 0 3 
​CAL​0​6​6​493​494​0 0 0 0 0 3 
​INC​0​4​9​493​490​0 0 0 0 0 3 | 499 499 54 0 
​LIT​0​4​12​493​489​0 0 0 0 0 3 | 499 499 54 0 4 
​LIT​0​3​15​493​488​0 0 0 0 0 3 | 499 499 54 0 4 3 
​MUL​0​3​18​493​489​0 0 0 0 0 3 | 499 499 54 0 12 
​STO​1​4​21​493​490​0 0 0 0 12 3 | 499 499 54 0 
​LIT​0​14​24​493​489​0 0 0 0 12 3 | 499 499 54 0 14 
​LOD​1​4​27​493​488​0 0 0 0 12 3 | 499 499 54 0 14 12 
​LSS​0​7​30​493​489​0 0 0 0 12 3 | 499 499 54 0 0 
​JPC​0​39​39​493​490​0 0 0 0 12 3 | 499 499 54 0 
​LIT​0​5​42​493​489​0 0 0 0 12 3 | 499 499 54 0 5 
​RTN​0​0​54​499​494​0 0 0 0 12 3 
Output result is: 3
​SYS​0​1​57​499​495​0 0 0 0 12 
​SYS​0​3​60​499​495​0 0 0 0 12 
 
 
 
 
Appendix D
 
Helpful Tips
 
This function will be helpful to find a variable in a different Activation Record some L levels down:
 
/**********************************************/
/*​​Find base L levels down​​ */
/*​​​​​​​ */
/**********************************************/
 
int base( int BP, int L)
{
​int arb = BP;​// arb = activation record base
​while ( L > 0)     //find base L levels down
​{
​​arb = pas[arb];
​​L--;
​}
​return arb;
}
 
For example in the instruction:
 
STO L, M  - You can do stack [base (IR.L) +  IR.M]= pas[SP] to store the content of  the top of the stack into an AR in the stack,  located L levels down from the current AR.
 
Note1: we are working at the CPU level therefore the instruction format must have only 3 fields. Any program whose number of fields in the instruction format is graterthan 3 will get a zero.
 
Note2: If your program does not follow the specifications, your grade will get a zero.
 
Note3: if any of the instructions is implemented by calling a function, your grade will be zero.
 
Note4: If you use dynamic memory handling, your grade will be zero.
 
Note5: Pointers are not allowed, except to read a file.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




​​​​​​​

掃一掃在手機打開當前頁
  • 上一篇:代寫指標 通達信【備戰(zhàn)龍妖】副圖指標
  • 下一篇:代寫 CMU 18-879、代做 Python 編程語言
  • ·CIV6782代做、代寫Python程序語言
  • ·CS305程序代做、代寫Python程序語言
  • ·代寫FN6806、代做c/c++,Python程序語言
  • ·代寫CS-UY 4563、Python程序語言代做
  • ·CE235編程代寫、代做python程序設計
  • ·COMP2010J代做、代寫c/c++,Python程序
  • ·COMP09110代做、代寫Python程序設計
  • ·&#160;COMP338編程代做、代寫Python程序語言
  • ·代寫MATH36031、Python程序設計代做
  • ·CDS523編程代寫、代做Python程序語言
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設計優(yōu)化
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權所有
    ICP備06013414號-3 公安備 42010502001045

    亚洲小说欧美另类婷婷| 国产精品mm| 亚洲精品网址| 日韩成人av影视| 欧美在线不卡| 免费人成黄页网站在线一区二区 | 日本不卡一二三区黄网| 久久亚洲综合| 亚洲一级黄色| 一本一道久久a久久| 欧美精品91| 欧美天堂一区| 欧美freesextv| 女主播福利一区| 麻豆成人入口| 日韩极品少妇| 国产精品亚洲综合在线观看| 99久久伊人| 日韩一区二区三区免费播放| 99热这里只有精品8| 久久久久久久久99精品大| 日韩av一区二区在线影视| 日韩精品电影在线观看| 三上悠亚一区二区| 91麻豆国产自产在线观看亚洲| 91精品观看| 精品视频免费| 秋霞午夜一区二区三区视频| 国产日产一区| 91精品一久久香蕉国产线看观看| 青青青国产精品| 日韩伦理福利| 91麻豆国产自产在线观看亚洲| 伊人久久亚洲热| 欧美亚洲精品在线| 日韩精品一区二区三区免费观看| 三级欧美日韩| 日韩成人久久| 精品国产一区二区三区2021| 96sao精品免费视频观看| 国产精品大片| 亚洲精品精选| 亚洲国产精品第一区二区| 日本亚洲欧洲无免费码在线| 欧美美女被草| 国产成人亚洲一区二区三区| 成人国产一区二区三区精品麻豆| 日韩在线观看一区| 国产一区二区三区朝在线观看| 日本а中文在线天堂| 蜜臀av性久久久久av蜜臀妖精| 米奇777在线欧美播放| 久久国产精品毛片| 蜜桃精品视频在线| 九色porny自拍视频在线观看| cao在线视频| 日本精品不卡| 久久亚洲人体| 亚洲字幕久久| 国产中文精品久高清在线不| 亚洲免费观看高清完整版在线观| 奇米狠狠一区二区三区| 日韩电影免费一区| 福利片在线一区二区| 美女主播精品视频一二三四| 欧美先锋资源| 久久电影一区| 中文字幕高清在线播放| 日韩在线观看| 久久字幕精品一区| 国产不卡精品| 欧美三级视频| 婷婷精品进入| 日本久久综合| 日本国产一区| 亚洲久草在线| aaa国产精品视频| 久久精品导航| 亚洲免费在线| 午夜精品成人av| 国产精品v亚洲精品v日韩精品| 国产一区二区观看| 奇米777国产一区国产二区| 羞羞色午夜精品一区二区三区| 国产精品毛片一区二区三区| 亚洲风情在线资源| 久久精品一本| 婷婷精品在线| 欧美先锋资源| 国产精品传媒精东影业在线| 福利精品一区| 国产欧美日韩免费观看| 精品嫩草影院| 玖玖国产精品视频| 深夜日韩欧美| 日韩欧美美女在线观看| 婷婷成人综合| 久久久久久自在自线| 美女视频黄免费的久久| 亚洲精品456| 欧美二区视频| 在线天堂新版最新版在线8| 麻豆成人久久精品二区三区红| 日韩一区二区三区在线看| 免费不卡中文字幕在线| 日韩免费视频| 久久99国内| 91精品99| 99蜜月精品久久91| 日韩av不卡一区| 在线电影一区二区| 国产成人免费9x9x人网站视频| 国产精品2区| 国产综合色产| 嫩草伊人久久精品少妇av杨幂| 国产亚洲一区| 亚洲激情亚洲| 麻豆久久久久久久| 色婷婷综合久久久久久| 国产精品毛片久久| 99久久999| 欧美精品自拍| 日韩精品亚洲一区二区三区免费| 福利电影一区| 中文在线а√在线8| 精品一区二区三区视频在线播放| 欧美日韩伦理| 久久国产欧美日韩精品| 精品久久久久中文字幕小说| 在线最新版中文在线| 国产精品免费大片| 欧美日韩少妇| 国产精品www994| 婷婷综合伊人| 日本美女一区二区| 亚洲福利国产| 美女网站视频久久| 成人羞羞视频在线看网址| 日韩在线免费| 精品免费在线| 国产极品嫩模在线观看91精品| 欧美视频亚洲视频| 视频二区不卡| 久久国产主播| 久久精品97| 99国产精品免费视频观看| 午夜av成人| 999久久久亚洲| 日韩成人在线一区| 国产精品av久久久久久麻豆网| 欧美在线看片| 欧美成人综合| 日本va欧美va精品| 日韩一区二区免费看| 99视频这里有精品| 免费av网站大全久久| 日韩成人午夜电影| 日韩久久综合| 久久久噜噜噜久久狠狠50岁| 一区二区精品| 国产视频欧美| 日本亚洲天堂网| 都市激情亚洲一区| 久久久人人人| 欧美日本中文| 国产精品久久久久久| 国产精品久久久网站| 涩涩涩久久久成人精品| 在线免费观看日本欧美爱情大片| 欧美日韩一区二区高清| 免费欧美在线视频| 超碰cao国产精品一区二区| 福利一区视频| 国产一级一区二区| 在线观看视频一区二区三区| 欧美在线观看天堂一区二区三区| 不卡在线一区| 日韩手机在线| 久久精品国产亚洲a| 亚洲欧美视频| 激情小说亚洲图片| 日本欧美一区二区| av最新在线| 国产专区一区| 日本在线成人| 日韩国产欧美在线视频| 老司机精品视频网站| 少妇精品在线| 亚洲久久一区二区| 中文在线8资源库| 精品在线99| 秋霞一区二区三区| 亚洲久久一区二区| 日韩中文在线电影| 欧美日韩国产综合网| jizz性欧美23| 国产精品视频一区二区三区| 精品国模一区二区三区| 中文亚洲免费| 亚洲电影在线|