加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做MATH2110、代寫c/c++,Python程序
代做MATH2110、代寫c/c++,Python程序

時間:2025-03-16  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



The University of Nottingham
SCHOOL OF MATHEMATICAL SCIENCES
SPRING SEMESTER SEMESTER 2025
MATH2110 - STATISTICS 3
Coursework 1
Deadline: 3pm, Friday 14/3/2025
Your neat, clearly-legible solutions should be submitted electronically as a Jupyter or PDF file via the MATH2110
Moodle page by the deadline indicated there. As this work is assessed, your submission must be entirely your
own work (see the University’s policy on Academic Misconduct).
Submissions up to five working days late will be subject to a penalty of 5% of the maximum mark per working
day.
Deadline extensions due to Support Plans and Extenuating Circumstances can be requested according to
School and University policies, as applicable to this module. Because of these policies, solutions (where
appropriate) and feedback cannot normally be released earlier than 10 working days after the main cohort
submission deadline.
Please post any academic queries in the corresponding Moodle forum, so that everyone receives the same
assistance. As it’s assessed work, I will only be able to answer points of clarification.
The work is intended to be approximately equal to a week’s worth of study time on the module for a student
who has worked through the module content as intended - including the R aspects. If you have any issues
relating to your own personal circumstances, then please email me.
THE DATA
The objective is to build a predictive model for the median house price in Boston neighbourhoods using various
neighbourhood characteristics. Median house price is a crucial indicator for urban planning and economic
studies. It is important to understand how different social indicators affect it. To this end, the dataset we will
analyse here contains detailed records of 506 neighbourhoods, capturing factors such as crime rates, age of
the properties, etc.
The training and test data are provided in the files BostonTrain.csv and BostonTest.csv available at the Moodle
page. The train file contains observations for 404 neighbourhoods. The target variable is medv, median value
of houses in thousands of dollars. The predictors include:
• crim, which contains the per capita crime rate by town.
• zn, which contains the proportion of residential land.
• rm, which contains the average number of rooms per house.
• age, which contains the proportion of houses built before 1940.
• dis, which contains distances to large employment centres.
MATH2110 Turn Over
2 MATH2110
• ptratio, which contains the student-teacher ratio by town.
• lstat, which contains the percentage of lower-status population.
The test data is provided in the file BostonTest.csv, containing observations for 102 neighbourhoods. The
test data should only be used to evaluate the predictive performance of your models.
THE TASKS
(a) (80 marks) Using only the training data (BostonTrain.csv), develop one or more models to predict the
median house price (medv) based on the predictor variables. You may use any methods covered in this
module. For this part, the test data must not be used. Your analysis should include:
– Model selection and justification.
– Diagnostics to assess the quality of your model(s).
– Interpretation of the model parameters. Which parameters seem to have a greater importance for
prediction?
(b) (20 marks) Use your “best” model(s) from (a) to predict the median house price (medv) for the neighbourhoods
in the test dataset (BostonTest.csv). Provide appropriate numerical summaries and plots to evaluate the
quality of your predictions. Compare your predictions to those of a simple linear model of the form:
medv ∼ crim.
NOTES
• An approximate breakdown of marks for part (a) is: exploratory analysis (20 marks), model selection
(40 marks), model checking and discussion (20 marks). About half the marks for each are for doing
technically correct and relevant things, and half for discussion and interpretation of the output. However,
this is only a guide, and the work does not have to be rigidly set out in this manner. There is some natural
overlap between these parts, and overall level of presentation and focus of the analysis are also important
in the assessment. The above marks are also not indicative of the relative amount of output/discussion
needed for each part, it is the quality of what is produced/discussed which matters.
• As always, the first step should be to do some exploratory analysis. However, you do not need to go
overboard on this. Explore the data yourself, but you only need to report the general picture, plus any
findings you think are particularly important.
• For the model fitting/selection, you can use any of the frequentist techniques we have covered to investigate
potential models - automated methods can be used to narrow down the search, but you can still use
hypothesis tests, e.g. if two different automated methods/criteria suggest slightly different models.
• Please make use of the help files for 𝑅 commands. Some functions may require you to change their
arguments a little from examples in the notes, or behaviour/output can be controlled by setting optional
arguments.
• You should check the model assumptions and whether conclusions are materially affected by any influential
data points.
• The task is deliberately open-ended: as this is a realistic situation with real data, there is not one single
correct answer, and different selection methods may suggest different “best” models - this is normal.
Your job is to investigate potential models using the information and techniques we have covered. The
important point is that you correctly use some of the relevant techniques in a logical and principled
manner, and provide a concise but insightful summary of your findings and reasoning. Note however
that you do not have to produce a report in a formal “report” format.
MATH2110
3 MATH2110
• You do not need to include all your 𝑅 output, as you will likely generate lots of output when experimenting.
For example, you may look at quite a large number of different plots and you might do lots of experimentation
in the model development stage. You only need to report the important plots/output which justify your
decisions and conclusions, and whilst there is no word or page limit, an overly-verbose analysis with
unnecessary output will detract from the impact.
MATH2110 End

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:推動電機行業創新升級,開創智能驅動未來新篇章
  • 下一篇:代寫 MATH5905、代做 Python/java 程序
  • ·代寫SE360、Java/Python程序代做
  • ·MISCADA代做、代寫Python程序語言
  • ·代寫CSE 231、代做Python程序語言
  • ·CP414編程代寫、代做Java/Python程序
  • ·CIV6782代做、代寫Python程序語言
  • ·CS305程序代做、代寫Python程序語言
  • ·代寫FN6806、代做c/c++,Python程序語言
  • ·代寫CS-UY 4563、Python程序語言代做
  • ·CE235編程代寫、代做python程序設計
  • ·COMP2010J代做、代寫c/c++,Python程序
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    婷婷成人综合| 99精品视频免费| 黄色欧美网站| 国产精品www994| www.精品| 欧美日韩少妇| 91欧美极品| 伊人久久综合网另类网站| 高潮一区二区| 夜夜嗨网站十八久久| 天堂av一区| 成人污污视频| 欧美在线免费| 中文字幕人成乱码在线观看 | 久久久久久毛片免费看| 国产精品13p| 狠狠入ady亚洲精品经典电影| 清纯唯美激情亚洲| 精品一区二区三区四区五区| 久久国产生活片100| 久久久久免费| 亚洲欧美日韩在线观看a三区| 天堂日韩电影| 亚洲2区在线| 国产不卡精品| 亚洲精品乱码| 久久国产免费看| 久久久一本精品| 免费一级欧美片在线观看| 国产国产精品| 天天操综合520| 精品高清在线| 99re91这里只有精品| 国色天香久久精品国产一区| 日本欧美久久久久免费播放网| 婷婷午夜社区一区| 中文字幕一区久| 成人一二三区| 蜜桃av一区二区三区电影| 狠狠入ady亚洲精品经典电影| 久久一区二区三区电影| 欧美一区二区三区久久| 日韩亚洲精品在线观看| 日韩激情一区二区| 西瓜成人精品人成网站| 亚洲精品aaaaa| 国产探花一区| 先锋影音国产精品| 国产欧美一区二区三区精品观看| 91亚洲精品在看在线观看高清| 国产一区二区三区的电影| 99久久久国产精品免费调教网站| 久久久人成影片一区二区三区在哪下载| 91一区二区三区四区| 91日韩在线| 日韩在线看片| 国模一区二区| 国产成人久久精品麻豆二区| 欧美一级在线| 日韩精品欧美精品| 亚洲人成人一区二区三区| 日本欧美韩国一区三区| 欧美日韩 国产精品| 国产精品亚洲欧美日韩一区在线| 欧美高清hd| 日韩精品成人在线观看| 丁香5月婷婷久久| 久久久久久久久丰满| 激情久久久久| 日韩午夜在线| 93在线视频精品免费观看| yellow在线观看网址| 国产极品久久久久久久久波多结野| 成人1区2区| 日本成人超碰在线观看| 欧州一区二区三区| 亚洲高清在线一区| 99久久99久久精品国产片桃花| japanese国产精品| 水野朝阳av一区二区三区| 色在线中文字幕| 久久99国产精品二区高清软件| 日本不卡的三区四区五区| 国产欧美高清视频在线| 超碰成人免费| 欧洲激情视频| 国产精品成人av| 国产极品一区| 亚洲三级在线| 国产成人高清精品免费5388| 激情欧美日韩| 欲香欲色天天天综合和网| 国产精品久久久久久久久久齐齐| 欧美日韩一区二区国产| 国产色99精品9i| 九色精品91| 久草免费在线视频| 日本午夜精品一区二区三区电影| 亚洲欧美校园春色| 99久久婷婷这里只有精品| 亚洲欧美日本日韩| 色婷婷成人网| 久久99视频| 国产综合视频| 日韩一区电影| 国产亚洲一区二区三区不卡| 色天天色综合| 国产精品久久久久一区二区三区厕所| 美腿丝袜亚洲一区| 日韩成人在线观看视频| 99在线观看免费视频精品观看| 久久99久久99精品免观看软件| 亚洲人成久久| 久久激情综合| 超碰激情在线| 国产精品igao视频网网址不卡日韩| 精品素人av| 欧美大胆a人体大胆做受| 一区二区三区午夜视频| 欧美日韩精品一区二区视频| 成人观看网址| 国产成人影院| 99pao成人国产永久免费视频| 成人在线观看免费视频| 日韩国产在线不卡视频| 丝袜诱惑制服诱惑色一区在线观看| 一区二区黄色| 999国产精品永久免费视频app| 中文在线аv在线| 亚洲伊人春色| 亚洲一级在线| 亚洲精一区二区三区| 亚洲国产专区| 日韩深夜福利网站| 欧美日韩夜夜| 欧美日韩在线精品一区二区三区激情综合| 亚洲69av| 首页国产欧美久久| 一区二区在线影院| 亚洲免费高清| 综合久久99| 99成人在线| 国产精一区二区| av成人激情| 综合久久伊人| 亚洲欧美日韩精品一区二区 | 精品日韩视频| 成人h动漫精品一区二区器材| а√天堂8资源在线| 视频一区日韩精品| 亚洲精品88| 国产乱人伦丫前精品视频| 日本不卡1234视频| 亚洲视频国产| 福利一区视频| 激情久久久久| 久久男人av| 另类激情亚洲| 日韩精品成人在线观看| 蜜桃av在线播放| 精品国产网站| 捆绑调教美女网站视频一区| 黑丝美女一区二区| 国产精品一区二区三区www| 天堂av在线一区| 精品中文字幕一区二区三区四区| 激情aⅴ欧美一区二区欲海潮| www.国产精品一区| 久久女人天堂| 香蕉精品视频在线观看| 91精品在线免费视频| 久久福利影视| aaa国产精品| 久久精品免费观看| 日韩天天综合| 日韩欧洲国产| 日本中文字幕视频一区| 午夜欧美精品久久久久久久| 国产永久精品大片wwwapp| 亚洲最新无码中文字幕久久| 久久国产综合| 国产精品久久免费视频| 中文字幕这里只有精品| 欧美色图国产精品| 欧美女优在线视频| 性欧美videohd高精| 狠狠干综合网| 日韩一区网站| 日本aⅴ免费视频一区二区三区| 日韩制服丝袜av| 色狠狠久久av综合| 国产成人精品999在线观看| 偷拍视频一区二区三区| 欧美日韩日本国产亚洲在线 | 久久国产主播| 少妇精品久久久| 日韩成人综合网| 欧美bbbbb| 极品少妇一区二区三区| 日韩av午夜|