加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MATH3030、代做c/c++,Java程序
代寫MATH3030、代做c/c++,Java程序

時間:2025-03-22  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



MATH3030: Coursework, Spring 2025
17/03/2025
• If you are a MATH4068 student, please stop reading and go and find the coursework for
MATH4068. This assessment is for MATH3030 students only.
• This coursework is ASSESSED and is worth 20% of the total module mark. It is split into two questions,
of equal weight.
• Deadline: Coursework should be submitted via the coursework submission area on the Moodle page
by Wednesday 30 April, 10am.
• Do not spend more time on this project than it merits - it is only worth 20% of the module mark.
• Format: Please submit a single pdf document. The easiest way to do this is to use R Markdown or
Quarto in R Studio. Do not submit raw markdown or R code - raw code (i.e. with no output,
plots, analysis etc) will receive a mark of 0.
• As this work is assessed, your submission must be entirely your own work (see the University’s policy
on Academic Misconduct).
• Submissions up to five working days late will be subject to a penalty of 5% of the maximum mark
per working day. Deadline extensions due to Support Plans and Extenuating Circumstances can be
requested according to School and University policies, as applicable to this module. Because of these
policies, solutions (where appropriate) and feedback cannot normally be released earlier than 10 working
days after the main cohort submission deadline.
• Report length: Your solution should not be too long. You should aim to convey the important
details in a way that is easy to follow, but not excessively long. Avoid repetition and long print-outs of
uninteresting numerical output.
• Please post any questions about the coursework on the Moodle discussion boards. This will ensure that
all students receive the same level of support. Please be careful not to ask anything on the discussion
boards that reveals any part of your solution to other students.
• I will be available to discuss the coursework at our Tuesday or Thursday sessions during the semester. I
will not be meeting students 1-1 to discuss the coursework outside of these times.
Plagiarism and Academic Misconduct For all assessed coursework it is important that you submit
your own work. Some information about plagiarism is given on the Moodle webpage.
Grading The two questions carry equal weight, and both will be marked out of 10. You will be assessed on
both the technical content (use of R, appropriate choice of method) and on the presentation and interpretation
of your results.
1
Coursework
The file UN.csv is available on Moodle, and contains data from the United Nations about 141 different
countries from 1952 to 2007. This includes the GDP per capita, the life expectancy, and the population.
Load the data into R, and extract the three different types of measurement using the commands below:
UN <- read.csv('UN.csv')
gdp <- UN[,3:14] # The GDP per capita.
years <- seq(1952, 2007,5)
colnames(gdp) <- years
rownames(gdp) <- UN[,2]
lifeExp <- UN[,15:26] # the life expectancy
colnames(lifeExp) <- years
rownames(lifeExp) <- UN[,2]
popn <- UN[,27:38] # the population size
colnames(popn) <- years
rownames(popn) <- UN[,2]
In this project, you will analyse these data using the methods we have looked at during the module.
Question 1
Exploratory data analysis
Begin by creating some basic exploratory data analysis plots, showing how the three variables (GDP, life
expectancy, population) have changed over the past 70 years. For example, you could show should how the
average life expectancy and GDP per capita for each continent has changed through time. Note that there
are many different things you could try - please pick a small number of plots which you think are most
informative.
Principal component analysis
Carry out principal component analysis of the GDP and life expectancy data. Analyse the two variable types
independently (i.e. do PCA on GDP, then on life-expectancy). Things to consider include whether you use
the sample covariance or correlation matrix, how many principal components you would choose to retain in
your analysis, and interpretation of the leading principal components.
Use your analysis to produce scatter plots of the PC scores for GDP and life expectancy, labelling the names
of the countries and colouring the data points by continent. You can also plot the first PC score for life
expectancy against the first PC score for GDP (again colouring and labelling your plot). Briefly discuss these
plots, explaining what they illustrate for particular countries.
Canonical correlation analysis
Perform CCA using log(GDP) and life expectancy as the two sets of variables. Provide a scatter plot of the
first pair of CC variables, labelling and colouring the points. What do you conclude from your canonical
correlation analysis? What has been the effect of using log(gdp) rather than gdp as used in the PCA?
Multidimensional scaling
Perform multidimensional scaling using the combined dataset of log(GDP), life expectancy, and log(popn),
i.e., using
UN.transformed <- cbind(log(UN[,3:14]), UN[,15:26], log(UN[,27:38]))
Find and plot a 2-dimensional representation of the data. As before, colour each data point by the continent
it is on. Discuss the story told by this plot in comparison with what you have found previously.
2
Question 2
Linear discriminant analysis
Use linear discriminant analysis to train a classifier to predict the continent of each country using gdp,
lifeExp, and popn from 1952-2007. Test the accuracy of your model by randomly splitting the data into test
and training sets, and calculate the predictive accuracy on the test set.
Clustering
Apply a selection of clustering methods to the GDP and life expectancy data. Choose an appropriate number
of clusters using a suitable method, and discuss your results. For example, do different methods find similar
clusters, is there a natural interpretation for the clusters etc? Note that you might want to consider scaling
the data before applying any method.
UN.scaled <- UN[,1:26]
UN.scaled[,3:26] <- scale(UN[,3:26])
Linear regression
Finally, we will look at whether the life expectancy in 2007 for each country can be predicted by a country’s
GDP over the previous 55 years. Build a model to predict the life expectancy of a country in 2007 from its
GDP values (or from log(gdp)). Explain your choice of regression method, and assess its accuracy. You
may want to compare several different regression methods, and assess whether it is better to use the raw gdp
values or log(gdp) as the predictors.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:CSC3050代做、Java/Python編程代寫
  • 下一篇:悠悠分期全國客服電話-悠悠分期24小時人工服務熱線
  • ·COMP 5076代寫、代做Python/Java程序
  • ·代寫COP3503、代做Java程序設計
  • ·COMP3340代做、代寫Python/Java程序
  • ·COM1008代做、代寫Java程序設計
  • ·MATH1053代做、Python/Java程序設計代寫
  • ·CS209A代做、Java程序設計代寫
  • ·ITC228編程代寫、代做Java程序語言
  • ·PROG2004代做、Java程序設計代寫
  • ·代寫Tic-Tac-To: Markov Decision、代做java程序語言
  • ·CP1407代做、代寫c/c++,Java程序
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    国产日韩1区| 欧美日韩精品| 日本成人超碰在线观看| 日本大胆欧美人术艺术动态| 网站一区二区| 美女免费视频一区二区| 极品在线视频| 欧美日韩国产亚洲一区| 亚洲国产中文在线| 亚洲色图国产| 高清av一区| 视频一区二区三区中文字幕| 久久九九国产| 亚洲图色一区二区三区| av一级久久| 国产成人福利夜色影视| 91视频综合| 国产精品美女久久久| 激情综合在线| 国产丝袜一区| 日韩综合一区二区三区| 国产麻豆一区二区三区| 国产欧美午夜| 欧美一级免费| 日韩午夜电影网| 国产精品久久久久久久免费观看| 91成人观看| 激情文学一区| 91精品天堂福利在线观看| 97色成人综合网站| 日韩在线观看一区二区三区| www欧美在线观看| 欧美激情视频一区二区三区免费| 高清在线一区| 国产91在线精品| 日本少妇一区| 青青草国产一区二区三区| 国产免费拔擦拔擦8x在线播放| 香蕉亚洲视频| 爽好久久久欧美精品| 在线亚洲伦理| 免费日韩视频| 裸体一区二区| 免费在线看成人av| 日韩av专区| 国产99在线| 激情aⅴ欧美一区二区欲海潮| 蜜臀av在线播放一区二区三区| 男女精品视频| 国产精品成人av| 亚洲综合电影| 欧美日韩尤物久久| 欧美在线一级| 日韩精品福利网| 国产日韩1区| 久久悠悠精品综合网| 欧美黄在线观看| 国产成人高清| 日本亚洲最大的色成网站www| 久久av综合| 亚洲一区二区三区中文字幕在线观看| 亚洲图色一区二区三区| 成人中文视频| 伊人久久综合影院| 亚洲欧洲一级| 喷白浆一区二区| 亚洲电影有码| 日本午夜精品视频在线观看| 91麻豆精品| 日本一不卡视频| 精品精品精品| 亚洲国产日韩欧美在线| 国产精品人人爽人人做我的可爱| 亚洲欧美日本视频在线观看| 91一区二区| 麻豆久久久久| 亚洲伊人精品酒店| 欧美成年网站| 欧美一区二区麻豆红桃视频 | 日韩免费高清| 激情久久一区二区| 亚洲网站免费| 国产一区二区亚洲| 麻豆蜜桃在线观看| 热三久草你在线| 欧美成人免费全部网站| 91精品一区| 精品免费视频| 亚洲中字在线| 福利一区和二区| 久久av超碰| 久久国产亚洲| 98精品久久久久久久| 国产欧美一级| 日韩区一区二| 欧美日韩国内| 黄色成人在线视频| 国产精品密蕾丝视频下载| 精品三级在线观看视频| 亚洲专区一区| 国产精品成人国产| 亚洲婷婷影院| 91成人影院| 日韩一区二区三区免费视频| 国产精区一区二区| 亚洲一级二级| 欧美日韩国产v| 精品一区二区三区中文字幕视频| 精品国内亚洲2022精品成人| 蜜桃一区二区三区四区| 久久一区亚洲| 麻豆视频一区| 国产拍在线视频| 国产精品99久久免费| 欧美肉体xxxx裸体137大胆| 深夜成人在线| 欧美欧美黄在线二区| 不卡中文字幕| 亚洲国产一区二区久久| 日韩在线亚洲| 男人的天堂久久精品| 亚洲国产午夜| 欧美午夜精品一区二区三区电影| 日本午夜大片a在线观看| 国产精品99久久免费| 不卡av一区二区| 国产一区二区三区的电影 | 日本大胆欧美人术艺术动态| 日韩高清不卡一区二区| 国产精品久久久网站| a天堂资源在线| 亚洲人成精品久久久| 自拍视频亚洲| 国产精品99精品一区二区三区∴| 少妇精品在线| 日本久久精品| 日韩电影一区二区三区| 丝袜a∨在线一区二区三区不卡| 国自产拍偷拍福利精品免费一| 999精品在线| 久久亚洲资源中文字| 精品福利久久久| 日韩精品dvd| 91在线一区| 91精品影视| 青青草91久久久久久久久| 肉色欧美久久久久久久免费看 | 青青草国产免费一区二区下载| av女在线播放| 精品久久国产一区| 免费人成黄页网站在线一区二区| 9999在线精品视频| 久久国产精品久久久久久电车 | 精品国产亚洲一区二区在线观看 | 亚洲精品.com| 亚洲成人精品| 日精品一区二区| 婷婷丁香综合| 国产精品18| 国产精品蜜芽在线观看| 福利片一区二区| 天天综合91| jiujiure精品视频播放| 亚洲影视一区二区三区| 成人在线电影在线观看视频| 日本亚洲三级在线| 天堂综合在线播放| 欧美理论在线播放| 国产欧美高清| 亚洲人成在线网站| 欧美 日韩 国产 一区| 国内揄拍国内精品久久| 国产精品不卡| 国产成人tv| 欧美片第1页综合| 免费在线观看视频一区| 国产调教精品| 久久久亚洲欧洲日产| 成人在线丰满少妇av| 欧美中文一区| 欧美激情视频一区二区三区在线播放| 免费成人av在线| 99精品在线观看| 国产在线不卡一区二区三区| 成人福利av| 不卡中文一二三区| 香蕉国产成人午夜av影院| 粉嫩av一区二区三区四区五区| 中日韩视频在线观看| 亚洲午夜免费| 欧美精品大片| 日韩免费看片| 一本色道久久| 牲欧美videos精品| 国产精品午夜一区二区三区| 韩日一区二区| 蜜桃视频在线观看一区二区| 亚洲91久久| 日韩中文字幕一区二区高清99| 日韩精品视频网站|