加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫AI3013編程、代做Python設計程序
代寫AI3013編程、代做Python設計程序

時間:2025-04-09  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



AI3013 Machine Learning Course Project
Description:
This is a GROUP project (each group should have 4-6 students), which aims at applying 
machine learning models as well as machine learning techniques (including but not limited 
to those covered in our lectures) to solve complex real-world tasks using Python.
Notice: This project should differ from the one you are undertaking in the Machine Learning 
Workshop Course.
Notice on Deep Learning Models:
You may decide to work on Deep learning models, and since our course mainly focus on 
machine learning models and techniques, deep learning model not be considered as more 
superior than other machine learning models if you just repeat a model that is designed by 
others. Also, training deep learning models can be very time consuming, so make sure you have 
the necessary computing resources.
Project Requirement:
Problem Selection:
• Choose a real-world problem from a domain of interest (e.g., healthcare, finance, 
image recognition, natural language processing, etc.).
• Describe the problem, including data sources and the type of machine learning model 
that will be applied (e.g., regression, classification, clustering, etc.).
Dataset Selection:
• Choose a dataset from public repositories (e.g., UCI Machine Learning Repository, 
Kaggle) suitable for this topic.
• Ensure the dataset has a sufficient number of samples and features to allow for 
meaningful analysis and model comparison.
• Apply appropriate data preprocessing steps (e.g., handling missing values, encoding 
categorical features, scaling).
Model Theory and Implementation:
• Select and implement at least 2 machine learning models for comparison.
• Provide a comprehensive explanation of the theoretical background of the chosen 
models (e.g., loss functions, optimization techniques, and assumptions).
• Discuss the strengths and weaknesses of the chosen models.
• Include mathematical derivations where relevant (e.g., gradient descent for linear 
regression).
• Implement the selected models From Scratch without using any existing machine 
learning libraries (e.g., scikit-learn, TensorFlow, Keras, etc.). The implementation 
should be done in Python using only basic libraries such as NumPy, Pandas, and 
Matplotlib.
Model Evaluation:
• Evaluate each model using suitable metrics (e.g., accuracy, precision, recall, F1 score, 
RMSE) for the problem.
• Use cross-validation to ensure model robustness and avoid overfitting.
• Analyze the behavior of the models based on the dataset, including bias-variance 
trade-offs, overfitting, and underfitting.
Analysis and Comparison:
• Compare the models in terms of:
o Performance (accuracy, precision, etc.).
o Computational complexity (training time, memory usage).
o Suitability for the dataset (e.g., which model performs best, why).
• Provide a comparison of the models' performances with appropriate visualizations 
(e.g., bar plots or tables comparing metrics).
• Discuss how the assumptions of each model affect its suitability for the problem.
Submission Requirement:
Upon completion, each group must submit the following materials:
1. Progress report
a) Abstract
b) Introduction: problem statement, motivation and background of the topic
c) Related works and existing techniques of the topic
d) Methodology
e) Progress/Current Status
f) Next Steps and Plan for Completion
2. Project report, your report should contain but not limited to the followingcontent:
a) Abstract
b) Introduction: problem statement, motivation and background of the topic
c) Related works and existing techniques of the topic
d) Methodology
e) Experimental study and result analysis
f) Future work and conclusion
g) References
h) Contribution of each team member
3. Link and description to the Dataset and the implementation code.
4. Your final report should be a minimum of 9 pages and a maximum of 12 pages
5. For the final report, the similarity check Must Not exceed 20%, and the AI generation 
content check Must Not exceed 25%.
6. Put all files (including: source code, presentation ppt and project report) into a ZIP file, 
then submit it on iSpace.
Deadlines:
 Team Information should be submitted by the end of Week 3.
 The Progress Report should be submitted by the end of Week 10.
 The Presentation will be arranged in Weeks 13 and 14 of this semester.
 Final Project Report should be submitted by Friday of Week 15 (May.23.2025).
Assessment:
In general, projects will be evaluated based on:
 Significance. (Did the authors choose an interesting or a “real" problem to work on, or 
only a small “toy" problem? Is this work likely to be useful and/or haveimpact?)
 The technical quality of the work. (i.e., Does the technical material make sense? Are 
the things tried reasonable? Are the proposed algorithms or applications clever and 
interesting? Do the student convey novel insight about the problem and/or algorithms?)
 The novelty of the work. (Do you have any novel contributions, e.g., new model, new 
technique, new method, etc.? Is this project applying a common technique to a well studied problem, or is the problem or method relatively unexplored?)
 The workload of the project. (The workload of your project may depend on but not 
limit to the following aspects: the complexity of the problem; the complexity of your 
method; the complexity of the dataset; do you test your model on one or multiple 
datasets? do you conduct a thorough experimental analysis on your model?)
Evaluation Percentage:
 Progress Report: 5%
 Final Report: 40%
 Presentation: 40% (Each group will have 15-20 minutesfor presentation, and
each student must present no less than 3 minutes)
 Code: 15%
It is YOUR responsibility to make sure:
 Your submitted files can be correctly opened. 
 Your code can be compiled and run. 
Late submission = 0; Plagiarism (cheating) = F

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代寫APSC 142、代做C/C++程序設計
  • 下一篇:DTS101TC代做、代寫Python語言程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    国产视频网站一区二区三区| 噜噜爱69成人精品| 国产精品白丝久久av网站| 热久久久久久久| 久久香蕉国产| 先锋影音国产精品| 免费亚洲一区| 久久影院午夜精品| 日韩一级网站| 欧美xxxx在线| 亚洲视频分类| 久久亚洲精品中文字幕| 美国欧美日韩国产在线播放| 欧美丝袜一区| 极品束缚调教一区二区网站| 欧美国产专区| 国产精品一区二区免费福利视频| 日韩主播视频在线| 精品欧美激情在线观看| 深夜福利一区| 欧美欧美黄在线二区| 国产精品99久久久久久董美香| 日韩中文欧美在线| 91成人影院| 久久久久网站| 国产suv精品一区二区四区视频| 999精品嫩草久久久久久99| 成人在线高清| 日韩久久精品| 成人精品电影| 久久国产99| 欧美在线网站| 美女亚洲一区| 欧美性感美女一区二区| 一区二区在线视频观看| 亚洲丁香日韩| 久久不见久久见国语| 中文不卡在线| 伊人久久一区| 高清一区二区三区av| 国产一区二区三区精品在线观看| 最近在线中文字幕| 国产免费拔擦拔擦8x高清在线人| 亚洲一区国产一区| 先锋亚洲精品| 日韩中文字幕麻豆| 美国毛片一区二区| yellow在线观看网址| 久久uomeier| 都市激情国产精品| 九色porny丨首页入口在线| 免费的成人av| 高潮在线视频| 国产欧美一区二区三区精品酒店 | 免费观看在线综合| 乱人伦精品视频在线观看| 香蕉久久国产| 综合日韩av| 欧美在线一级| 日本不卡视频在线观看| 亚洲情侣在线| 亚洲裸色大胆大尺寸艺术写真| 亚洲黄色录像| 国产精品天天看天天狠| 久久精品九九| 成人a'v在线播放| 亚洲激情网址| 蜜臀av性久久久久蜜臀aⅴ四虎 | 精品69视频一区二区三区Q| 中日韩男男gay无套| 国产亚洲一级| 92国产精品| 日韩午夜视频在线| 在线成人超碰| 中文字幕日韩高清在线| 久久免费黄色| 亚洲一区二区伦理| 亚洲精品国产精品国产| 欧美一级免费| 欧美精品导航| 98视频精品全部国产| 精品福利网址导航| 精品中文字幕一区二区三区av| 亚洲欧美激情诱惑| 亚洲人成在线网站| 日韩精品三区四区| 国产精品一区三区在线观看| 国产福利资源一区| 先锋资源久久| 六月婷婷综合| 国产精品啊啊啊| 成人午夜大片| 在线亚洲精品| 日本精品在线中文字幕| 亚洲精品日本| 精品一区二区三区的国产在线观看| 成人羞羞视频在线看网址| 91久久久久| 日韩一级毛片| 99亚洲男女激情在线观看| 第九色区aⅴ天堂久久香| 伊人影院久久| 欧美天堂视频| 国产亚洲字幕| 亚洲小说欧美另类社区| 美国欧美日韩国产在线播放| 久久精品一区| 1313精品午夜理伦电影| 国产精品视区| 美女视频一区二区| 在线观看视频一区二区三区| 亚洲欧洲日本mm| 亚洲a成人v| 国产成人精品福利| 视频一区欧美精品| 亚洲国产欧美国产综合一区| 秋霞一区二区| 国产精品久久天天影视| 麻豆91在线观看| 日本韩国欧美超级黄在线观看| 色一区二区三区四区| 亚洲欧洲日韩精品在线| 私拍精品福利视频在线一区| 国产精品蜜芽在线观看| 亚洲三级在线| 黄色av成人| 麻豆国产精品777777在线| 成人久久久久| 欧美性生活一级| 亚洲天堂中文字幕在线观看| 蜜桃久久av一区| 国产成人三级| 宅男噜噜噜66一区二区| 日本不卡一区二区三区高清视频| 国产一级成人av| 日韩免费高清| 福利在线一区| 人人精品久久| 激情av综合| 先锋影音网一区二区| 91福利精品在线观看| 日本美女一区二区三区视频| 大奶一区二区三区| 精品免费av在线| 欧美三级午夜理伦三级在线观看 | 日韩中文影院| 国产成人福利av| 偷拍精品精品一区二区三区| 美国十次综合久久| 国产精品久久久久久久免费观看 | 国产精品免费99久久久| 老牛影视一区二区三区| 国产欧美91| av中文字幕在线观看第一页| 日韩美女精品| 日韩欧美不卡| 国内毛片久久| 国产日韩欧美在线播放不卡| 亚洲第一区色| 国产精品va| 西西人体一区二区| 亚欧洲精品视频在线观看| 色婷婷综合网| 久久97久久97精品免视看秋霞 | 丝袜美腿亚洲色图| 日韩电影在线免费观看| 男人av在线播放| 九色精品91| 国产日产一区| 日本久久一二三四| 精品美女久久| 久久久精品国产**网站| 久久国产99| 第一区第二区在线| 青青国产91久久久久久 | 91日韩免费| 精品国产91乱码一区二区三区四区| 精品久久福利| 免费成人性网站| 精品国产中文字幕第一页 | 日韩电影免费在线| 国产亚洲欧美日韩精品一区二区三区| 亚洲一级影院| 国产成人短视频在线观看| 日本乱码一区二区三区不卡| 成人婷婷网色偷偷亚洲男人的天堂| 亚洲久久一区| 日韩片欧美片| 在线一区视频| 国产精品主播在线观看| 亚洲最新色图| 精品123区| 香蕉久久夜色精品| 欧美综合精品| 国产精品毛片aⅴ一区二区三区| 日韩精品dvd| 一本一道久久综合狠狠老| 日韩 欧美一区二区三区| 日韩成人综合网站| 日韩av有码|