加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

DTS101TC代做、代寫Python語(yǔ)言程序
DTS101TC代做、代寫Python語(yǔ)言程序

時(shí)間:2025-04-09  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



DTS101TC Coursework
This coursework is designed to assess your understanding of neural networks and machine learning concepts, as well as your ability to implement, analyze, and evaluate models effectively. It consists of two main components: five assignments and an image object detection project. Detailed instructions, marking criteria, and submission requirements are outlined below. AIGC tools are not allowed.

Part 1: Assignments (50 Marks)
This section includes five individual assignments, each focusing on different neural network techniques and datasets. The breakdown for each task includes marks for code execution, analysis, evaluation, and reporting quality.
Submission Requirements
Please submit your notebooks to Gradescope. Each assignment must be completed according to the instructions provided in the Python Jupyter Notebook, with all output cells saved alongside the code. You don’t need to write a report for this part. Please put all the analysis and results in your notebook.
Weekly TA checks during lab sessions and office hours are mandatory. Assignments will not be graded without TA verification.
Question 1: Digit Recognition with Neural Networks
Task: Implement a basic neural network using TensorFlow/PyTorch to train a digit recognition model on the MNIST dataset.
Mark Breakdown:
oCode execution by Gradescope: 5 marks
oData and model analysis: 2 marks
oTest cases: 2 marks
oReport quality (comments and formatting): 1 mark
Question 2: Logistic Regression for Flower Classification
Task: Build and implement a Logistic Regression model to classify three types of iris flowers using the dataset in sklearn.
Mark Breakdown:
oCode execution by Gradescope: 5 marks
oData and model analysis: 2 marks
oTest cases: 2 marks
oReport quality (comments and formatting): 1 mark

Question 3: House Price Prediction with ANN/MLP
Task: Design and implement an ANN/MLP model to predict house prices in California using the dataset in sklearn.
Mark Breakdown:
oCode execution by Gradescope: 5 marks
oData and model analysis: 2 marks
oTest cases: 2 marks
oReport quality (comments and formatting): 1 mark
Question 4: Stock Price Prediction with RNN
Task: Create an RNN model to predict stock prices for companies like Apple and Amazon from the Nasdaq market using the provided dataset.
Mark Breakdown:
oCode execution by Gradescope: 5 marks
oData and model analysis: 2 marks
oModel evaluation: 2 marks
oReport quality (comments and formatting): 1 mark
Question 5: Image Classification with CNN
Task: Develop a CNN model to classify images into 10 classes using the CIFAR-10 dataset.
Mark Breakdown:
oCode execution by Gradescope: 5 marks
oData and model analysis: 2 marks
oModel evaluation: 2 marks
oReport quality (comments and formatting): 1 mark

Part 2: Project (50 Marks)
The project involves building a custom image dataset and implementing an object detection neural network. This is a comprehensive task that evaluates multiple skills, from data preparation to model evaluation. 
Submission Requirements
All of your dataset, code (Python files and ipynb files) should be a package in a single ZIP file, with a PDF of your report (notebook with output cells, analysis, and answers). INCLUDE your dataset in the zip file.
Step 1: Dataset Creation (10 Marks)
Task: Collect images and use tools like Label Studio or LabelMe to create labeled datasets for object detection. You can add one more class into the provided dataset. The dataset should have up to 10 classes. Each contains at least 200 images.
Deliverable: Include the dataset in the ZIP file submission.
Mark Breakdown:
oCorrect images and labels: 6 marks
oData collection and labeling process explanation: 2 marks
oDataset information summary: 2 marks
Step 2: Data Loading and Exploration (10 Marks)
Task: Organize data into train, validation, and test sets. Display dataset statistics, such as class distributions, image shapes, and random samples with labels. Randomly plot 5 images in the training set with their corresponding labels.
Mark Breakdown:
oCorrect dataset splitting: 6 marks
oDataset statistics: 2 marks
oSample images and labels visualization: 2 marks
Step 3: Model Implementation (10 Marks)
Task: Implement an object detection model, such as YOLOv8. Include a calculation of the total number of parameters in your model. You must include calculation details.
Mark Breakdown:
oCode and comments: 6 marks
oParameter calculation details and result: 4 marks
Step 4: Model Training (10 Marks)
Task: Train the model using appropriate hyperparameters (e.g., epoch number, optimizer, learning rate). Visualize training and validation performance through graphs of loss and accuracy.
Mark Breakdown:
oCode and comments: 6 marks
oHyperparameters analysis: 2 marks
oPerformance analysis: 2 marks
Step 5: Model Evaluation and Testing (10 Marks)
Task: Evaluate the model on the test set, displaying predictions (visual result) and calculating metrics like mean Average Precision (mAP) and a confusion matrix.
Mark Breakdown:
oCode and comments: 6 marks
oPrediction results: 2 marks
oEvaluation metrics: 2 marks
Submission Guidelines
1.Assignments: Submit your Jupyter Notebooks via Gradescope. Ensure all output cells are saved and visible.
2.Project: Submit your ZIP file containing the dataset, Python files, Jupyter Notebooks, and a PDF report via Learning Mall Core.
General Notes and Policies
1.Plagiarism: Submissions must be your own work. Avoid copying from external sources without proper attribution. Sharing code is prohibited.
2.Late Submissions: Follow the university's policy on late submissions; penalties may apply.
3.Support: Utilize lab sessions and TA office hours for guidance.

Marking Criteria
Assignments
Code execution by Gradescope: 5 marks
Data and model analysis: 2 marks
Test cases or model evaluation: 2 marks
Report quality (comments and formatting): 1 mark
Project
Code (60%):
oFully functional code with clear layout and comments: 6 marks
oPartially functional code with some outputs: 4 marks
oCode that partially implements the solution but does not produce outcomes: 2 marks
oIncomplete or non-functional code: 0 marks
Analysis (40%):
oComplete and accurate answers with clear understanding: 4 marks
oPartial answers showing some understanding: 2 marks
oLimited understanding or incorrect answers:: 0 marks

請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機(jī)打開當(dāng)前頁(yè)
  • 上一篇:代寫AI3013編程、代做Python設(shè)計(jì)程序
  • 下一篇:代寫MEC 302、代做python編程設(shè)計(jì)
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開團(tuán)工具
    出評(píng) 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    久久久久黄色| 亚洲视频1区| 欧美一区三区| 日韩综合小视频| 老司机午夜免费精品视频| 日韩影片在线观看| 久久精品国产福利| 亚洲女人av| 久久久人成影片免费观看| 日韩国产一区二| 美国三级日本三级久久99 | 少妇精品导航| www 久久久| 手机看片久久| 欧美专区一区二区三区| 久久久久蜜桃| 日韩成人免费电影| 欧美日韩亚洲一区二区三区在线| 成人一二三区| 91精品电影| 久久精品色综合| av在线不卡精品| 午夜精品久久久久久久久久蜜桃| 深夜福利一区| 综合久久一区| 欧美一区成人| 日韩在线视屏| 免费成人你懂的| 黄色精品免费| 蜜桃视频欧美| 成人三级视频| 亚洲一区二区三区四区电影| 91成人小视频| 欧美日本一区二区高清播放视频| 欧美性aaa| 日韩中文欧美| 岛国av在线网站| 老司机午夜精品视频在线观看| 羞羞色午夜精品一区二区三区| 精品国产乱码久久久久久果冻传媒| 国产在线日韩精品| 欧美黄色一级| 亚洲一区二区小说| 亚洲精品伊人| 日本美女一区二区三区视频| 久久精品国产精品亚洲综合| 99热播精品免费| 日本综合视频| 久久99久久99精品免观看软件| 爱啪啪综合导航| 欧美mv日韩| 麻豆网站免费在线观看| 国产资源在线观看入口av| 蜜桃久久精品一区二区| 免费在线观看一区二区三区| 老司机免费视频久久| 日韩在线一二三区| 日韩av有码| 日韩夫妻性生活xx| 成人亚洲网站| 亚洲自啪免费| 香蕉国产精品| 亚洲女同一区| 天天av综合| 午夜精品网站| 亚洲在线网站| 日本一二区不卡| 国产高清日韩| 日韩最新在线| 麻豆一区二区99久久久久| 欧美aⅴ一区二区三区视频| 麻豆中文一区二区| 中文字幕一区二区三三| 国产在线日韩精品| 日韩在线不卡| 精品国产网站| 精品国产乱码久久久久久樱花| 日韩精品成人在线观看| 国偷自产av一区二区三区| 日本不卡高清| 五月激情综合| 日本久久一二三四| 国产精品久久久久久久久久齐齐| 日韩精品成人一区二区三区| 综合在线一区| 国产美女撒尿一区二区| 黑色丝袜福利片av久久| 亚洲小说欧美另类社区| 性色av一区二区怡红| 美女一区网站| 亚洲人成毛片在线播放女女| 亚洲男人都懂第一日本| 美女呻吟一区| 在线综合视频| 99久久精品一区二区成人| 国内自拍视频一区二区三区| 麻豆国产精品| 天天射成人网| a日韩av网址| 91精品国产色综合久久不卡粉嫩| 伊人精品综合| 99日韩精品| 国产精品成人国产| 日韩电影一区二区三区| 久久国产一二区| 成人精品久久| 日本欧美大码aⅴ在线播放| 精品国产不卡一区二区| 伊人久久综合| 超碰这里只有精品| 日韩电影在线观看电影| 午夜国产欧美理论在线播放| 国产综合色区在线观看| 国产在线日韩精品| 九色精品国产蝌蚪| 日韩在线中文| 欧美日韩国产一区二区在线观看| 色狠狠一区二区三区| 偷拍视频一区二区三区| 麻豆精品一区二区三区| 精品一区不卡| 在线视频cao| 亚州精品视频| 亚洲专区在线| 国产精品porn| 欧美福利影院| 国产成人精选| 亚洲精品aⅴ| 免费在线观看一区二区三区| 亚洲精选久久| 国产图片一区| av在线最新| 希岛爱理av免费一区二区| 狠狠色综合网| 美女久久久精品| 999久久久国产精品| 亚洲www啪成人一区二区| 亚洲美女久久| 香蕉成人久久| 99re8精品视频在线观看| 在线精品国产| 欧美a级理论片| 欧美1区2区3区| 欧美在线国产| 国精品一区二区| 日日摸夜夜添夜夜添亚洲女人| 日日天天久久| 欧美另类激情| 一呦二呦三呦国产精品| 久久精品男女| 欧美二区视频| 亚洲综合激情在线| 国产亚洲在线| 亚洲伊人春色| 伊人色综合一区二区三区影院视频 | 久久成人av| 欧美专区18| 亚洲国产精品嫩草影院久久av| 水蜜桃久久夜色精品一区的特点| 国产aⅴ精品一区二区四区| 国产视频一区在线观看一区免费| 欧美激情91| 日韩综合网站| 97人人澡人人爽91综合色| 夜鲁夜鲁夜鲁视频在线播放| 黑人久久a级毛片免费观看| 日本国产亚洲| 精品一区欧美| 国产激情一区| 国产精品久久久久久影院8一贰佰 国产精品久久久久久麻豆一区软件 | 国产一区二区三区| 91精品在线观看国产| 免费亚洲视频| 国产一级久久| 日韩不卡在线视频| 国产成人精品一区二区三区免费 | 久久一区91| 国产精品videossex久久发布| 一本色道久久| 日韩成人精品在线观看| 精品欧美日韩精品| 欧美久久综合网| 综合激情网站| 伊人久久综合一区二区| 99久久婷婷这里只有精品| 日本不卡高清视频| 日韩综合一区| 亚洲成人国产| 国产传媒欧美日韩成人精品大片| jizzjizz中国精品麻豆| 精品视频在线你懂得| 影音先锋中文字幕一区| 日韩精品一卡二卡三卡四卡无卡| 我要色综合中文字幕| 日韩综合久久| 免费观看30秒视频久久| 久久国产成人午夜av影院宅| 国产成人精品免费视| 日韩在线欧美| 香蕉久久夜色精品国产|