加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

STAT4602代寫、代做Java/Python編程
STAT4602代寫、代做Java/Python編程

時間:2025-04-26  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



STAT4602 Multivariate Data Analysis Assignment 2
Hand in solutions for ALL questions by April 23 (Wednesday), 2025,
11:59pm
1. The file IRIS.DAT gives a dataset containing 4 measurements for 3 species
of iris. In the dataset, each row corresponds to one observation. The first 4
columns gives the 4 measurements, and the last column takes values 1, 2, 3,
corresponding to the 3 species of iris.
(a) Perform multivariate regression for each species separately, treating the
two sepal measures (x1 and x2) as response variables, and the two petal
measures (x3 and x4) as indepedent variables. Report the fitted models.
(b) For the species “versicolour” (serial number 2), test whether the two sets of
regression coefficients (excluding intercepts) are the same in the regression
equations for x1 and for x2.
(c) Consider a multivariate linear model as in (a), but incorporate the
3 species in the model with the aid of additional dummy variables.
Specifically, intorduce new variables:
• s ∈ {0, 1}: s = 1 if species = 1, and s = 0 otherwise.
• v ∈ {0, 1}: v = 1 if species = 2, and v = 0 otherwise.
• sx3 = s · x3: sx3 = x3 if species = 1, and sx3 = 0 otherwise.
• sx4 = s · x4: sx4 = x4 if species = 1, and sx4 = 0 otherwise.
• vx3 = v · x3: vx3 = x3 if species = 2, and vx3 = 0 otherwise.
• vx4 = v · x4: vx4 = x4 if species = 2, and vx4 = 0 otherwise.
Perform the regression and test the hypothesis that the 3 species have
the same model.
(d) For a input with species = 1, 2, 3, is the model obtained in (c) equivalent
to the 3 separate multivariate regression models obtained in (a)?
2. Consider the data given by CORKDATA.sas in Question 1 of Assignment 1:
N E S W N E S W
72 66 76 77 91 79 100 75
60 53 66 63 56 68 47 50
56 57 64 58 79 65 70 61
41 29 36 38 81 80 68 58
32 32 35 36 78 55 67 60
30 35 34 26 46 38 37 38
39 39 31 27 39 35 34 37
42 43 31 25 32 30 30 32
37 40 31 25 60 50 67 54
33 29 27 36 35 37 48 39
32 30 34 28 39 36 39 31
63 45 74 63 50 34 37 40
54 46 60 52 43 37 39 50
47 51 52 45 48 54 57 43
(a) Find the principal components based on the covariance matrix. Interpret
them if possible.
HKU STAT4602 (2024-25, Semester 2) 1
STAT4602 Multivariate Data Analysis Assignment 2
(b) How many principal components would you suggest to retain in
summarizing the total variability of the data? Give reasons, including
results of statistical tests if appropriate.
(c) Repeat (a) and (b) using the correlation matrix instead.
(d) Compare and comment on the two sets of results for covariance and
correlation matrices. Recommend a set of results and explain why.
3. Annual financial data are collected for bankrupt firms approximately 2 years
prior to their bankruptcy and for financially sound firms at about the same
time. The data on four variables, X1 = (cash flow) / (total debt), X2 = (net
income) / (total assets), X3 = (current assets) / (current liabilities) and X4 =
(current assets) / (net sales) are stored in the file FINANICALDATA.TXT. In
addition, a categorical variable Y identifies whether a firm is bankrupt (Y = 1)
or non-bankrupt (Y = 2).
(a) Apply the linear discriminant analysis (LDA) to classify the firms into
a bankrupt group and a non-bankrupt group. Calculate the error rates
with cross-validation and report the results.
(b) Apply quadratic discriminant analysis (QDA) to classify the firms,
perform cross-validation and report the results.
4. The distances between pairs of five items are as follows:
Cluster the five items using the single linkage, complete linkage, and average
linkage hierarchical methods. Compare the results.
5. Consider multivariate linear regression with the following data structure:
individual Y1 Y2 · · · Yp X1 X2 · · · Xk
1 y11 y12 · · · y1p x11 x12 · · · x1k
2 y21 y22 · · · y2p x21 x22 x2k
n yn1 yn2 · · · ynp xn1 xn2 · · · xnk
The regression model is given as
Y
n×p
= Xn×k
B
k×p
+ Un×p
,
HKU STAT4602 (2024-25, Semester 2) 2
STAT4602 Multivariate Data Analysis Assignment 2
where the matrices Y , X, B and U are given as follows:
Here for i = 1, . . . , n, the vector of errors of observation i is εi =
(εj1, εj2, · · · , εjp)

, and we assume that ε1, . . . , εn
iid∼ Np(0, Σ).
(a) We know that the maximum likelihood estimator of B and Σ are:
Bˆ = (X′X)
−1 X′Y , Σˆ =
1
n


Uˆ , where Uˆ = Y − XBˆ .
Calculate the maximum value of the log-likelihood function
ℓ(B, Σ) = −
np
2
log(2π) −
n
2
log |Σ| − 1
2
tr[(Y − XB)Σ
−1
(Y − XB)

]
= −
np
2
log(2π) −
n
2
log |Σ| − 1
2
tr[Σ
−1
(Y − XB)

(Y − XB)].
(b) Plug in the definition of Bˆ and express Uˆ as a matrix calculated based
on X and Y . Calculate X⊤Uˆ and Uˆ

X.
(c) Prove the identity
(Y − XB)

(Y − XB)
= (Y − XBˆ )

(Y − XBˆ ) + (XBˆ − XB)

(XBˆ − XB).
Hint: by definition, Y − XBˆ = Uˆ , and we have
(Y − XB)

(Y − XB)
= (Y − XBˆ + XBˆ − XB)

(Y − XBˆ + XBˆ − XB).
6. Consider p random variables X1, . . . , Xp. Suppose that Y1, . . . , Yp are the first
to the p-th population principle components of X1, . . . , Xp.
(a) What are the population principle components of the random variables
Y1, . . . , Yp? Why?
(b) Suppose that the population covariance matrix of (X1, . . . , Xp)

is Σ and
its eigenvalue decomposition is
Σ =
p
X
i=1
λiαiα

i
,
where α1, . . . , αp are orthogonal unit vectors. What is the covariance
bewteen X1 and Y1?
7. Consider a k-class classification task with ni observations in class i, i =
1, . . . , k. Define matrices
H =
k
X
j=1
nj (x¯·j − x¯··)(x¯·j − x¯··)

, E =
k
X
j=1
nj
X
i=1
(xij − x¯·j )(xij − x¯·j )

, S =
n
E
− k
.
HKU STAT4602 (2024-25, Semester 2) 3
STAT4602 Multivariate Data Analysis Assignment 2
In LDA for multiclass classification, we consider the eigenvalue decompostion
E
−1Hai = ℓiai
, i = 1, . . . , s, s = rank(E
−1H).
where a1, . . . , as satisfy a

iSai = 1 and a

iSai
′ = 0 for all i, i′ = 1, . . . , s, i = i

.
(a) While the above definitions were introduced in the case of multiclass
classification (k > 2), we may check to what extent these definitions are
reasonable in binary classification (k = 2). In this case, we have the
sample means within class 1 and class 2 as x¯·1 and x¯·2 respectively. Can
you calculate the overall mean x¯·· based on x¯·1, x¯·2 and n1, n2?
(b) For k = 2, express H as a matrix calculated based on x¯·1, x¯·2 and n1, n2.
(c) What is the rank of the matrix H when k = 2?
(d) We mentioned in the lecture that we can simply use one Fisher
discriminant function for binary classification. Can we adopt the
definitions above to define more than one Fisher discriminant functions
for binary classification? Why?
HKU STAT4602 (2024-25, Semester 2) 4

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機打開當前頁
  • 上一篇:代寫CS1010S、代做Python編程語言
  • 下一篇:STAT4602代寫、代做Java/Python編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    久久精品青草| 99久久婷婷国产综合精品首页| 国产一区二区三区四区五区传媒 | 国产免费播放一区二区| 国产资源在线观看入口av| 精品国产精品国产偷麻豆| 国产精品a级| 日韩影院二区| 红桃视频欧美| 久久视频社区| 麻豆视频一区二区| 成人一二三区| 欧美偷拍综合| 日韩经典一区二区| 久久精品亚洲| 国产网站在线| 亚洲人成亚洲精品| 日韩av中文字幕一区二区| 久久亚洲精选| 亚洲一级影院| 成人av影音| 国产精品1区在线| 国产精品亲子伦av一区二区三区| 国产精品婷婷| 欧美中文一区二区| 美女精品久久| 国产欧美日韩精品一区二区免费 | 欧美人成在线观看ccc36| 国产精品亚洲欧美一级在线| 欧美日韩尤物久久| 免费日本视频一区| 黄色免费成人| 999视频精品| 成人在线亚洲| 久久wwww| 国产欧美日韩精品一区二区三区 | 国产探花在线精品| 国产精品草草| 国产日韩亚洲| 国产精品99久久久久久董美香 | 精品中文在线| 欧美二区观看| 91成人app| 国内一区二区三区| 欧美亚洲一区二区三区| 羞羞视频在线观看一区二区| 97人人精品| 日韩精品一二区| 老牛影视一区二区三区| 国产一区91| 中国女人久久久| 牛夜精品久久久久久久99黑人| 精品日产乱码久久久久久仙踪林| 日韩在线视频一区二区三区| 亚洲欧洲av| 亚洲精品中文字幕99999| 一区二区影院| 亚洲国产一区二区三区a毛片 | 欧美日韩在线观看首页| 国产精品毛片久久| 蜜臀av一区二区在线观看| 久久一二三区| 蜜桃久久久久久| 国产精品久久久久久影院8一贰佰| 午夜在线精品偷拍| 免播放器亚洲一区| 久久久久久网| 亚洲人成午夜免电影费观看| 中文字幕高清在线播放| 天天综合网天天| 色偷偷色偷偷色偷偷在线视频| 国产99在线| 在线一区视频观看| 免费一级欧美在线观看视频| 欧美一级播放| 成人久久精品| 日韩一二三区在线观看| 国产一级成人av| 亚洲一级影院| 午夜一区不卡| av高清不卡| 美女性感视频久久| 欧美激情亚洲| 2020国产精品极品色在线观看| 都市激情亚洲欧美| 亚洲精品小说| 国产精品99视频| 51一区二区三区| 影音先锋中文字幕一区二区| 国产精品一区2区3区| 视频在线一区| 欧美日韩黑人| 欧美国产一级| 久久精品女人| 亚洲免费福利一区| 欧美在线导航| 亚洲综合欧美| 日本中文字幕一区二区| 亚洲综合激情在线| 91午夜精品| 狠狠入ady亚洲精品经典电影| 色偷偷综合网| 另类小说视频一区二区| 日本亚洲欧美天堂免费| 亚洲高清久久| 91av亚洲| 国产精品观看| 精品国产一区二区三区久久久蜜臀| 亚洲精品99| 精品日韩视频| 亚欧日韩另类中文欧美| 欧美综合自拍| 免费观看30秒视频久久| 日韩综合一区二区| 国产精品网站在线看| 午夜在线精品| 99精品国产一区二区青青牛奶| 亚洲精品3区| 欧美日韩hd| 男人av在线播放| 国产精品免费不| 亚洲国产一区二区在线观看| 中文字幕人成乱码在线观看 | 久久精品不卡| 麻豆免费在线| 国产精品成人3p一区二区三区 | 国产中文欧美日韩在线| 999国产精品999久久久久久| 国产黄大片在线观看| 国产精品二区影院| 99热国内精品| 91亚洲视频| 亚洲精选av| 免费成人美女在线观看| 综合久草视频| 在线一区电影| 欧美在线不卡| 久久精品国产www456c0m| 日韩理论电影| 久久av偷拍| 免费观看久久久4p| 96sao精品免费视频观看| 激情自拍一区| 欧美在线黄色| 天天操综合520| 成人深夜福利| 日本精品影院| 九色成人搞黄网站| 999精品视频在这里| 久久青青视频| 五月亚洲婷婷| 国产精品videosex性欧美| 国产精品欧美在线观看| 亚洲一区二区伦理| 国内精品视频| 老司机久久99久久精品播放免费| 欧美激情综合色综合啪啪| 婷婷久久一区| 亚洲乱码久久| 性色一区二区三区| 日韩一级电影| 日韩夫妻性生活xx| 北条麻妃一区二区三区在线观看| 日韩精品专区| 久久久久国产精品一区三寸| 欧美一区在线看| 黄色亚洲免费| 无码少妇一区二区三区| а√在线中文在线新版| 青青草97国产精品麻豆| 久久精品99国产精品| 亚洲成人日韩| 国产精品毛片aⅴ一区二区三区| 视频一区欧美日韩| 精品久久国产一区| 国产一区二区三区| 天天久久综合| 亚洲国产最新| 精精国产xxxx视频在线播放 | 国产中文精品久高清在线不| 日韩网站在线| 日韩精品三级| 色在线中文字幕| 国产免费久久| 蜜桃av噜噜一区| 一区视频网站| 天堂av在线一区| 国产精品久久久久久久久久白浆| 精品日韩视频| 激情久久一区| 亚洲亚洲免费| 日韩久久综合| 99热在线成人| 久久精品理论片| 色777狠狠狠综合伊人| 精品久久中文| 亚洲精品影院在线观看| 中文在线8资源库| 久久精品成人| 国产欧美另类|