加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

STAT4602代寫、代做Java/Python編程
STAT4602代寫、代做Java/Python編程

時間:2025-04-26  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



STAT4602 Multivariate Data Analysis Assignment 2
Hand in solutions for ALL questions by April 23 (Wednesday), 2025,
11:59pm
1. The file IRIS.DAT gives a dataset containing 4 measurements for 3 species
of iris. In the dataset, each row corresponds to one observation. The first 4
columns gives the 4 measurements, and the last column takes values 1, 2, 3,
corresponding to the 3 species of iris.
(a) Perform multivariate regression for each species separately, treating the
two sepal measures (x1 and x2) as response variables, and the two petal
measures (x3 and x4) as indepedent variables. Report the fitted models.
(b) For the species “versicolour” (serial number 2), test whether the two sets of
regression coefficients (excluding intercepts) are the same in the regression
equations for x1 and for x2.
(c) Consider a multivariate linear model as in (a), but incorporate the
3 species in the model with the aid of additional dummy variables.
Specifically, intorduce new variables:
• s ∈ {0, 1}: s = 1 if species = 1, and s = 0 otherwise.
• v ∈ {0, 1}: v = 1 if species = 2, and v = 0 otherwise.
• sx3 = s · x3: sx3 = x3 if species = 1, and sx3 = 0 otherwise.
• sx4 = s · x4: sx4 = x4 if species = 1, and sx4 = 0 otherwise.
• vx3 = v · x3: vx3 = x3 if species = 2, and vx3 = 0 otherwise.
• vx4 = v · x4: vx4 = x4 if species = 2, and vx4 = 0 otherwise.
Perform the regression and test the hypothesis that the 3 species have
the same model.
(d) For a input with species = 1, 2, 3, is the model obtained in (c) equivalent
to the 3 separate multivariate regression models obtained in (a)?
2. Consider the data given by CORKDATA.sas in Question 1 of Assignment 1:
N E S W N E S W
72 66 76 77 91 79 100 75
60 53 66 63 56 68 47 50
56 57 64 58 79 65 70 61
41 29 36 38 81 80 68 58
32 32 35 36 78 55 67 60
30 35 34 26 46 38 37 38
39 39 31 27 39 35 34 37
42 43 31 25 32 30 30 32
37 40 31 25 60 50 67 54
33 29 27 36 35 37 48 39
32 30 34 28 39 36 39 31
63 45 74 63 50 34 37 40
54 46 60 52 43 37 39 50
47 51 52 45 48 54 57 43
(a) Find the principal components based on the covariance matrix. Interpret
them if possible.
HKU STAT4602 (2024-25, Semester 2) 1
STAT4602 Multivariate Data Analysis Assignment 2
(b) How many principal components would you suggest to retain in
summarizing the total variability of the data? Give reasons, including
results of statistical tests if appropriate.
(c) Repeat (a) and (b) using the correlation matrix instead.
(d) Compare and comment on the two sets of results for covariance and
correlation matrices. Recommend a set of results and explain why.
3. Annual financial data are collected for bankrupt firms approximately 2 years
prior to their bankruptcy and for financially sound firms at about the same
time. The data on four variables, X1 = (cash flow) / (total debt), X2 = (net
income) / (total assets), X3 = (current assets) / (current liabilities) and X4 =
(current assets) / (net sales) are stored in the file FINANICALDATA.TXT. In
addition, a categorical variable Y identifies whether a firm is bankrupt (Y = 1)
or non-bankrupt (Y = 2).
(a) Apply the linear discriminant analysis (LDA) to classify the firms into
a bankrupt group and a non-bankrupt group. Calculate the error rates
with cross-validation and report the results.
(b) Apply quadratic discriminant analysis (QDA) to classify the firms,
perform cross-validation and report the results.
4. The distances between pairs of five items are as follows:
Cluster the five items using the single linkage, complete linkage, and average
linkage hierarchical methods. Compare the results.
5. Consider multivariate linear regression with the following data structure:
individual Y1 Y2 · · · Yp X1 X2 · · · Xk
1 y11 y12 · · · y1p x11 x12 · · · x1k
2 y21 y22 · · · y2p x21 x22 x2k
n yn1 yn2 · · · ynp xn1 xn2 · · · xnk
The regression model is given as
Y
n×p
= Xn×k
B
k×p
+ Un×p
,
HKU STAT4602 (2024-25, Semester 2) 2
STAT4602 Multivariate Data Analysis Assignment 2
where the matrices Y , X, B and U are given as follows:
Here for i = 1, . . . , n, the vector of errors of observation i is εi =
(εj1, εj2, · · · , εjp)

, and we assume that ε1, . . . , εn
iid∼ Np(0, Σ).
(a) We know that the maximum likelihood estimator of B and Σ are:
Bˆ = (X′X)
−1 X′Y , Σˆ =
1
n


Uˆ , where Uˆ = Y − XBˆ .
Calculate the maximum value of the log-likelihood function
ℓ(B, Σ) = −
np
2
log(2π) −
n
2
log |Σ| − 1
2
tr[(Y − XB)Σ
−1
(Y − XB)

]
= −
np
2
log(2π) −
n
2
log |Σ| − 1
2
tr[Σ
−1
(Y − XB)

(Y − XB)].
(b) Plug in the definition of Bˆ and express Uˆ as a matrix calculated based
on X and Y . Calculate X⊤Uˆ and Uˆ

X.
(c) Prove the identity
(Y − XB)

(Y − XB)
= (Y − XBˆ )

(Y − XBˆ ) + (XBˆ − XB)

(XBˆ − XB).
Hint: by definition, Y − XBˆ = Uˆ , and we have
(Y − XB)

(Y − XB)
= (Y − XBˆ + XBˆ − XB)

(Y − XBˆ + XBˆ − XB).
6. Consider p random variables X1, . . . , Xp. Suppose that Y1, . . . , Yp are the first
to the p-th population principle components of X1, . . . , Xp.
(a) What are the population principle components of the random variables
Y1, . . . , Yp? Why?
(b) Suppose that the population covariance matrix of (X1, . . . , Xp)

is Σ and
its eigenvalue decomposition is
Σ =
p
X
i=1
λiαiα

i
,
where α1, . . . , αp are orthogonal unit vectors. What is the covariance
bewteen X1 and Y1?
7. Consider a k-class classification task with ni observations in class i, i =
1, . . . , k. Define matrices
H =
k
X
j=1
nj (x¯·j − x¯··)(x¯·j − x¯··)

, E =
k
X
j=1
nj
X
i=1
(xij − x¯·j )(xij − x¯·j )

, S =
n
E
− k
.
HKU STAT4602 (2024-25, Semester 2) 3
STAT4602 Multivariate Data Analysis Assignment 2
In LDA for multiclass classification, we consider the eigenvalue decompostion
E
−1Hai = ℓiai
, i = 1, . . . , s, s = rank(E
−1H).
where a1, . . . , as satisfy a

iSai = 1 and a

iSai
′ = 0 for all i, i′ = 1, . . . , s, i = i

.
(a) While the above definitions were introduced in the case of multiclass
classification (k > 2), we may check to what extent these definitions are
reasonable in binary classification (k = 2). In this case, we have the
sample means within class 1 and class 2 as x¯·1 and x¯·2 respectively. Can
you calculate the overall mean x¯·· based on x¯·1, x¯·2 and n1, n2?
(b) For k = 2, express H as a matrix calculated based on x¯·1, x¯·2 and n1, n2.
(c) What is the rank of the matrix H when k = 2?
(d) We mentioned in the lecture that we can simply use one Fisher
discriminant function for binary classification. Can we adopt the
definitions above to define more than one Fisher discriminant functions
for binary classification? Why?
HKU STAT4602 (2024-25, Semester 2) 4

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:STAT4602代寫、代做Java/Python編程
  • 下一篇:代做 ECE391、代寫 C/C++設(shè)計(jì)編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    激情欧美亚洲| 精品中文字幕一区二区三区| 亚洲在线一区| 一区三区自拍| 亚洲乱码久久| 97久久夜色精品国产| 91精品久久久久久久蜜月| 一区二区三区在线观看免费| 蜜桃视频在线观看一区| 小说区图片区色综合区| 午夜欧洲一区| 蓝色福利精品导航| 少妇视频一区| 在线国产一区二区| 激情小说一区| 国产精品一国产精品| 九九久久国产| 毛片电影在线| 美女爽到呻吟久久久久| 99久久精品国产亚洲精品| 日本精品在线播放| 在线免费观看亚洲| ww久久综合久中文字幕| 阿v视频在线观看| 国产亚洲激情| 亚洲国产一区二区在线观看 | 欧美黄免费看| 欧美性www| 欧美aa视频| 91视频综合| 丝袜脚交一区二区| 99国产精品久久久久久久 | 欧洲杯半决赛直播| 久久久久久久久丰满| av一级亚洲| 久久伊人久久| 亚洲国产合集| 国产成人视屏| 白嫩亚洲一区二区三区| 免费亚洲视频| 天天综合在线观看| 91精品影视| 日本在线高清| av资源亚洲| 日韩精品久久| 国模套图日韩精品一区二区| 色婷婷综合网| 国产精品伦理久久久久久| 免费精品99久久国产综合精品| 99国产一区| 亚洲专区在线| 水野朝阳av一区二区三区| 久久国产精品久久w女人spa| 国产一区二区你懂的| 中文久久精品| 蜜乳av一区二区| 国产剧情av在线播放| 九色porny视频在线观看| 欧美男人天堂| 韩国女主播一区二区| 国模一区二区| 欧美成人家庭影院| 一区二区国产精品| 国产精品v日韩精品v欧美精品网站| 六月婷婷色综合| 欧美黄色一区| 日韩高清影视在线观看| 美国十次综合久久| 久久精品论坛| japanese国产精品| 亚洲专区一区| bbw在线视频| 全球中文成人在线| 日本不卡视频在线观看| aa亚洲一区一区三区| 亚洲老女人视频免费| av不卡一区二区| 久久一区二区三区喷水| 欧美日韩四区| 国产精品videosex性欧美| 亚洲人成在线网站| 日韩精品午夜视频| 亚洲免费福利一区| 国产精品高潮呻吟久久久久| 欧美亚洲国产精品久久| 国产精品日本欧美一区二区三区| 超碰成人av| 久久一日本道色综合久久| 91精品福利观看| 日本一区二区三区播放| 欧美日韩夜夜| 欧美日韩日本国产亚洲在线| 超碰在线99| 日韩高清不卡一区| 美女久久99| 精品中国亚洲| 日韩在线卡一卡二| 欧美一级二级视频| 欧美久久亚洲| 亚洲va在线| 国产精品久久久久久麻豆一区软件| 精品捆绑调教一区二区三区| 麻豆极品一区二区三区| 久久gogo国模啪啪裸体| 成人短片线上看| 免费观看亚洲| 亚洲一区有码| 久久精品国内一区二区三区水蜜桃| 亚洲欧美日韩国产一区| 久久91视频| 日韩精品一区二区三区中文在线| 欧美理论电影大全| 主播大秀视频在线观看一区二区| www.久久热| 亚洲手机视频| 精精国产xxx在线视频app| 国产成人视屏| 免费成人av| 欧亚一区二区| 亚洲国产合集| 亚洲美女一区| 日韩一区二区三区四区五区| 日韩电影在线一区| 中文在线一区| 国产精品久久久久久模特 | 国产午夜久久| 国产欧美在线观看免费| 日韩高清三区| 玖玖在线精品| 最新亚洲国产| 午夜久久tv| 久久精品国产成人一区二区三区| 精品视频一区二区三区在线观看| 99综合精品| 欧美喷水视频| 性xxxx欧美老肥妇牲乱| 久久国产人妖系列| 欧美一区二区三区久久| 天堂av中文在线观看| 午夜先锋成人动漫在线| 老司机精品视频网站| 中文字幕成人| 成人av资源电影网站| 亚洲国产国产亚洲一二三| 欧美顶级毛片在线播放| 日本不良网站在线观看| 亚洲国产网址| 亚洲激情偷拍| 综合国产在线| 日韩一级免费| 国产精品毛片aⅴ一区二区三区| 亚洲欧美偷拍自拍| 麻豆久久一区二区| 天天射天天综合网| 91精品在线免费视频| 亚洲专区欧美专区| 亚欧日韩另类中文欧美| 国产精品x453.com| 777久久精品| 桃色av一区二区| 激情亚洲另类图片区小说区| 亚洲国产天堂| 国产韩国精品一区二区三区| 麻豆国产欧美一区二区三区| 亚洲中午字幕| 精品国产一区二| 在线看片福利| 久久久久欧美精品| 久久婷婷国产| 六月丁香综合| 亚洲伊人影院| 久久天天久久| 1024精品久久久久久久久| 亚洲久草在线| 视频在线观看91| 99久久人爽人人添人人澡| 欧美激情啪啪| 伊人成人在线| 日韩成人一区二区三区在线观看| 欧美xxxxx视频| 久久九九精品| 国产成人调教视频在线观看| 少妇视频在线观看| 亚洲性人人天天夜夜摸| 国产一区二区三区电影在线观看| 丝袜美腿亚洲一区二区图片| 99精品国产一区二区三区2021| 久久精品二区亚洲w码| 伊人蜜桃色噜噜激情综合| 欧美日韩播放| av高清一区| 亚洲精品1区| 综合视频一区| 在线看片一区| 97精品在线| 欧洲视频一区| 91精品久久久久久综合五月天| 日本中文在线一区| 高潮一区二区| 欧美日韩国产高清|