加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

MSE 5760代做、代寫C/C++,Java程序
MSE 5760代做、代寫C/C++,Java程序

時間:2025-05-06  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



MSE 5760: Spring 2025 HW 6 (due 05/04/25)
Topic: Autoencoders (AE) and Variational Autoencoders (VAE)
Background:
In this final homework, you will build a deep autoencoder, a convolutional 
autoencoder and a denoising autoencoder to reconstruct images of an isotropic composite 
with different volume fractions of fibers distributed in the matrix. Five different volume 
fraction of fibers are represented in the dataset and these form five different class labels for 
the composites. After the initial practice with AEs and reconstruction of images using latent 
vectors, you will build a VAE to examine the same dataset. After training the VAE (as best 
as you can using the free colab resources to reproduces images), you will use it to generate 
new images by randomly sampling datapoints from the learned probability distribution of 
the data in latent space. Finally, you will build a conditional VAE to not only generate new 
images but generate them for arbitrary volume fractions of fibers in the composite.
The entire dataset containing 10,000 images of composites with five classes of 
volume fractions of fibers was built by Zequn He (currently a Ph.D. student in MEAM in 
Prof. Celia Reina’s group who helped put together this course in Summer 2022 by designing 
all the labs and homework sets). Each image in the dataset shows three fibers of different 
volumes with circular cross sections. Periodic boundary conditions were used to generate 
the images. Hence, in some images, the three fiber particles may appear broken up into
more than three pieces. The total cross sectional area of all the fibers in each image can, 
however, be divided equally among three fibers. Please do not use this dataset for other 
work or share it on data portals without prior permission from Zequn He
(hezequn@seas.upenn.edu).
Due to the large demands on memory and the intricacies of the AE-VAE 
architecture, the results obtained will not be of the same level of accuracy and quality that 
was possible in the previous homework sets. No train/test split is recommended as all 
10,000 images are used for training purposes. You may, however, carry out further analysis 
using train/test split or by tuning the hyperparameters or changing the architecture for 
bonus points. The maximum bonus points awarded for this homework will be 5.
**********************************Please Note****************************
Sample codes for building the AE, VAE and a conditional GAN were provided in 
Lab 6. There is no separate notebook provided for the homework and students will 
have to prepare one. Tensorflow and keras were used in Lab 6 and is recommended 
for this homework. You are welcome to use other libraries such as pytorch.
************************************************************************
1. Model 1: Deep Autoencoder model (20 points)
Import the needed libraries. Load the original dataset from canvas. Check the 
dimensions of each loaded image for consistency. Scale the images.
1.1 Print the class labels and the number of images in each class. Print the shape of 
the input tensor representing images and the shape of the vector representing the 
class labels. (2 points)
1.1. A measure equivalent to the volume fraction of fibers in each composite image is 
the mean pixel value of the image. As the images are of low-resolution, you may 
notice a slight discrepancy in the assigned class value of the image and the 
calculated mean pixel intensity. As the resolution of images increases, there will be 
negligible difference between the assigned class label and the pixel mean of the 
image. Henceforth, we shall use the pixel mean (PM) intensity of the images to be 
the class label. Print a representative sample of ten images showing the volume 
fraction of fibers in the composite along with the PM value of the image. (3 points)
1.2. Build the following deep AE using the latent dimension value = 64.
(a) Let the first layer of the encoder have 256 neurons.
(b) Let the second layer of the encoder have 128 neurons.
(c) Let the last layer of the encoder be the context or latent vector.
(d) Use ReLU for the activation function in all of the above layers.
(e) Build a deep decoder with its input being the context layer of the encoder.
(f) Build two more layers of the decoder with 128 and 256 neurons, respectively. 
These two layers can use the ReLU activation function.
(g) Build the final layer of the decoder such that its output is compatible with the 
reconstruction of the original input shape tensor. Use sigmoid activation for the 
final output layer of the decoder.
(h) Use ADAM as your optimizer and a standard learning rate. Let the loss be the 
mean square error loss. Compile the AE and train it for at least 50 epochs.
(10 points)
1.3. Print the summary of the encoder and decoder blocks showing the output shape of 
each layer along with the number of parameters that need to be trained. Monitor 
and print the lossfor each epoch. Plot the loss as a function of the epochs. (2 points)
1.4. Plot the first ten reconstructed images showing both the original and reconstructed 
images. (3 points)
2. Model 2: Convolutional Autoencoder model (20 points)
2.1 Build the following convolutional AE with the latent dimension = 64
(a) In the first convolution block of the encoder, use 8 filters with 3x3 kernels, 
ReLU activation and zero padding. Apply max pooling layer with a kernel of 
size 2.
(b) In the second convolution block use 16 filters with 3x3 kernels, ReLU activation 
and zero padding. Apply max pooling layer with a kernel of size 2.
(c) In the third layer of the encoder use 32 filters with 3x3 kernels, ReLU activation 
and zero padding. Apply max pooling layer with a kernel of size 2.
(d) Flatten the obtained feature map and then use a Dense layer with ReLU 
activation function to extract the latent variables.
(d) Build the decoder in the reverse order of the encoder filters with the latent 
output layer of the encoder serving as the input to the decoder part.
(e) Use ADAM as your optimizer and a standard learning rate. Let the loss be the 
mean square error loss. Compile the convolutional AE and train it for at least 
50 epochs.
(10 points)
2.2 Print the summary of the encoder and decoder blocks showing the output shape of 
each layer along with the number of parameters that need to be trained. Monitor 
and print the lossfor each epoch. Plot the loss as a function of the epochs. (5 points)
2.3 Plot the first ten reconstructed images showing both the original and reconstructed 
images. (5 points)
3. Model 3: Denoising convolutional Autoencoder model (15 points)
3.1 Add a Gaussian noise to each image. Choose a Gaussian with a mean of zero and a 
small standard deviation, typically ~ 0.2. Plot a sample of five original images with 
noise. (3 points)
3.2 Use the same convolutional autoencoder as in Problem 2 but with noisy images fed 
to the encoder. Train and display all the information as in 2.2 and 2.3.
(12 points)
4. Model 4: Variational Autoencoder model (25 points)
4.1 Set the latent dimension of the VAE be 64. Build a convolutional autoencoder with 
the following architecture. Set the first block to have 32 filters, 3x3 kernels with 
stride = 2 and zero padding.
4.2 Build the second block with 64 filters, 3x3 kernels, stride =2 and zero padding. Use 
ReLU in both blocks. Apply max pooling layer with kernel of size 2x2.
4.3 Build an appropriate output layer of the encoder that captures the latent space 
probability distribution.
4.4 Define the reparametrized mean and variance of this distribution.
4.5 Build the convolutional decoder in reverse order. Apply the same kernels, stride 
and padding as in the encoder above. Choose the output layer of the decoder and 
apply the appropriate activation function.
4.6 Compile and train the model. Monitor the reconstruction loss, Kullback-Liebler 
loss and the total loss. Plot all three quantities for 500 epochs. (10 points)
4.7 Plot the first ten reconstructed images along with their originals. (5 points)
4.8 Generate ten random latent variables from a standard Gaussian with mean zero and 
unit variance. Display the generated images from these random values of the latent 
vector. Comment on the quality of your results and how it may differ from the input 
images. Mention at least one improvement that can be implemented which may 
improve the results. (3+3+4=10 points)
5. Model 5: Conditional Variational Autoencoder model (20 points)
A conditional VAE differs from a VAE by allowing for an extra input 
variable to both the encoder and the decoder as shown below. The extra label could 
be a class label, ‘c’ for each image. This extra label will enable one to infer the 
conditional probability that describes the latent vector conditioned on the class label 
‘c’ of the input. In VAE, using the variational inference principle, one infers the 
Gaussian distribution (by learning its mean and variance) of the latent vector 
representing each input ‘x’. In conditional VAE, one infers the Gaussian 
conditional distribution of the latent vector conditioned on the extra input variable 
‘label’.
For the dataset used in this homework, there are two advantages of the 
conditional VAE compared to the VAE: (i) the conditional VAE provides a cheap
way to validate the model by comparing the pixel mean of the generated images 
with the conditional class label values (pixel mean) in latent space used to generate 
the images. (ii) The trained conditional VAE can be used to generate images of 
composites with arbitrary volume fraction of fibers with sufficient confidence once 
the validation is done satisfactorily.
A conditional VAE. (source: https://ijdykeman.github.io/ml/2016/12/21/cvae.html)
A good explanation of the conditional VAE in addition to the resource cited in the 
figure above is this: https://agustinus.kristia.de/techblog/2016/12/17/conditional vae/.
A conditional GAN (cGAN) toy problem was shown in Lab 6 where the volume 
fraction (replaced by pixel mean for cheaper model validation) was the design 
parameter, and thus, the condition input into the cGAN. In this question, you will 
build a conditional VAE for the same task of generating new images of composites 
as in Problem 4 by randomly choosing points in the latent space. Since each point 
in the latent space represents a conditional Gaussian distribution, it also has a class 
label. Therefore, it becomes possible to calculate the pixel mean of a generated 
image and compare it with the target ‘c’ value of the random point in latent space. 
It is recommended that students familiarize themselves with the code for providing 
the input to the cGAN with class labels and follow similar logic for building the 
conditional VAE. You may also seek help from the TA’s if necessary.
5.1 Create an array that contains both images and labels (the pixel mean of each image). 
Note the label here is the condition and it should be stored in the additional channel 
of each image.
5.2 Use the same structure, activation functions and optimizer as the one used to build 
the VAE in Problem 4. Print the summary of the encoder and decoder blocks 
showing the output shape of each layer along with the number of parameters that 
need to be trained. (5 points)
5.3 Train the cVAE for 500 epochs. Plot the reconstruction loss, Kullback-Liebler loss 
and the total loss. Plot the first ten reconstructed images along with their originals. 
Include values of the pixel mean for both sets of images. (5 points)
5.4 Generate 10 fake conditions (i.e., ten volume fractions represented as pixel means 
evenly spaced within the range 0.1 to 0.4 as used in Lab 6) for image generation. 
Print the shape of the generated latent variable. Print the target volume fraction (or 
pixel mean). Show the shape of the array that combines the latent variables and fake 
conditions. Print the shape of the generated image tensor. (2 points)
5.5 Plot the 10 generated images. For each image show the generated condition (the 
pixel mean of each image generated in 5.4) and the pixel mean calculated from the 
image itself. (3 points)
5.6 Compare the set of generated images from the conditional VAE with the ones 
obtained in Lab 6 using cGAN. Comment on their differences and analyze the 
possible causes for the differences. (5 points)

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代做 EEB 504B、代寫 java/Python 程序
  • 下一篇:COMP1117B代做、代寫Python程序設計
  • ·代做CAP 4611、代寫C/C++,Java程序
  • ·代做ISYS1001、代寫C++,Java程序
  • ·代做COMP2221、代寫Java程序設計
  • ·代寫MATH3030、代做c/c++,Java程序
  • ·COMP 5076代寫、代做Python/Java程序
  • ·代寫COP3503、代做Java程序設計
  • ·COMP3340代做、代寫Python/Java程序
  • ·COM1008代做、代寫Java程序設計
  • ·MATH1053代做、Python/Java程序設計代寫
  • ·CS209A代做、Java程序設計代寫
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩视频一区| 欧美日韩伊人| 日韩一级网站| 欧美2区3区4区| 一本综合精品| 97精品国产福利一区二区三区| 久久狠狠久久| 国产精品亚洲一区二区在线观看 | 国产一区二区精品久| 日本一区免费网站| 亚洲综合二区| 欧美va天堂在线| 99精品中文字幕在线不卡 | 人人精品人人爱| 久久三级福利| 伊人久久大香线蕉av超碰| 综合精品一区| 欧美a一级片| 成人亚洲欧美| 免费亚洲电影在线| 伊人精品成人久久综合软件| 开心激情综合| 精品国产三区在线| 91成人在线网站| 欧美aaaaaa午夜精品| 天堂√中文最新版在线| 香蕉精品999视频一区二区| 极品裸体白嫩激情啪啪国产精品| 久久伊人影院| 欧美大片91| 久久男人av| 欧美全黄视频| 看片网站欧美日韩| 青青国产精品| 成人免费网站www网站高清| 激情aⅴ欧美一区二区欲海潮| 尤物网精品视频| 亚洲国产老妈| 羞羞答答成人影院www| 国模吧视频一区| 欧美一二区在线观看| 成人久久电影| 精品国产91| 卡一精品卡二卡三网站乱码| 精品黄色一级片| av日韩在线播放| 亚洲高清999| 红杏aⅴ成人免费视频| 成人av地址| eeuss鲁片一区二区三区| 视频精品二区| 国产一区二区三区不卡av| 66精品视频在线观看| 欧美涩涩视频| 日本韩国欧美超级黄在线观看| 欧美一区二区三区久久| 久久人人97超碰国产公开结果| 久久视频国产| 午夜视频一区| 久久成人免费| 黄色成人免费网| 日韩欧美精品| 美女网站一区二区| 日韩国产精品91| 国产成人短视频在线观看| 天美av一区二区三区久久| 亚洲动漫精品| 成人在线免费观看网站| 99久久激情| 国产精品毛片一区二区三区| 日韩主播视频在线| 免费观看30秒视频久久| 日韩高清成人| 一本综合精品| 国产成人精品三级高清久久91| 日韩成人久久| 成人午夜国产| 国产精品入口| 日韩一级毛片| 麻豆精品一区二区| 在线不卡一区| 日韩精品亚洲专区在线观看| 99tv成人| 丝袜美腿一区二区三区| 牛牛精品一区二区| 亚洲乱码视频| 美女久久精品| 天天操夜夜操国产精品| 岛国av在线网站| 久久精品国产精品亚洲精品| 欧美日韩亚洲一区三区| 色妞ww精品视频7777| 欧美 日韩 国产精品免费观看| 久久xxxx| 美日韩一区二区三区| 国产精品嫩草影院在线看| 精品成av人一区二区三区| 国产午夜精品一区二区三区欧美| 蜜臀国产一区| 成人在线分类| 久久精品国产www456c0m| 久久国产精品久久久久久电车| 丝袜美腿一区| 国产成人三级| 九一成人免费视频| 在线一区av| 韩国三级大全久久网站| 久久激情一区| а√在线中文在线新版| 日本不卡的三区四区五区| 深夜福利一区| 视频一区视频二区在线观看| 国产一区二区三区成人欧美日韩在线观看| 国产探花在线精品一区二区| 欧美美女视频| 午夜av成人| 日韩av一二三| 免费欧美日韩| 亚洲精品69| 久久亚洲国产| 午夜一级久久| 麻豆91在线观看| 精品久久久亚洲| 国产精品麻豆久久| 中文精品久久| jvid福利在线一区二区| 日韩三区在线| 中文字幕一区二区三区日韩精品| 久热综合在线亚洲精品| 欧美日韩a区| 午夜久久tv| 影音先锋亚洲一区| 久久综合电影| 国产精品最新自拍| 青青久久av| 秋霞国产精品| 蜜桃一区av| 成人性片免费| 欧美xxxx在线| 色999韩欧美国产综合俺来也| 98视频精品全部国产| 亚洲男人av| 免费观看亚洲视频大全| 日韩伦理福利| 成人精品毛片| 日韩制服一区| 欧美xxxx在线| 国产日韩欧美| 五月婷婷六月综合| 都市激情亚洲综合| 极品少妇一区二区三区| 欧美国产日韩电影| 国产一区二区三区亚洲| 成人一区视频| 欧美在线色图| 亚洲色图国产| 国产亚洲毛片在线| 久久99蜜桃| 91综合久久一区二区| 久久的色偷偷| 日韩精品免费观看视频| 久久久久综合| 国产精品s色| 久久成人一区| 91精品国产自产精品男人的天堂 | 中文字幕一区久| 国产精品天天看天天狠| 精品捆绑调教一区二区三区 | 国产婷婷精品| 香港久久久电影| 99久久亚洲国产日韩美女| 亚洲高清av| 国产亚洲电影| 亚洲综合av一区二区三区| 欧美1级日本1级| 国产一区二区三区视频在线| 黄色在线免费观看网站| 久久人人99| 亚洲精华一区二区三区| 色吧亚洲日本| 竹菊久久久久久久| 亚洲人成精品久久久 | 日韩高清欧美激情| 久久国产精品亚洲77777| 国产精品丝袜在线播放| 日本不卡视频在线| 蜜桃精品在线观看| 天堂成人娱乐在线视频免费播放网站| 日日夜夜精品视频免费| 日韩成人精品一区| 成人免费av| 色综合综合网| 国产日韩一区二区三区在线播放 | 亚洲精品极品| 日韩精品第一区| 狠狠综合久久| 加勒比色老久久爱综合网| 国产精区一区二区| 亚洲国产精选| 四虎成人精品永久免费av九九|