加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫3D printer materials estimation編程

時間:2024-02-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct **% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a **row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫Dragonfly Network Diagram Analysis
  • 下一篇:代寫UDP Client-Server application java程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    久久一区欧美| 日韩专区在线视频| 电影一区中文字幕| 麻豆成全视频免费观看在线看| 精品久久久亚洲| 成人黄色91| 另类中文字幕国产精品| 免费黄色成人| 久久伊人影院| 亚洲久久视频| 亚洲国产尤物| 蜜臀久久久99精品久久久久久| 99精品一区| 精品视频一区二区三区| 日本女人一区二区三区| 韩国三级一区| 欧美3p视频| 一本久道久久综合婷婷鲸鱼| 国产一区二区三区不卡av| 国产精品一区二区99| 久久国产视频网| 天堂а√在线最新版中文在线| 欧美在线亚洲综合一区| 国产伦乱精品| 一区三区自拍| 日日狠狠久久偷偷综合色| 亚洲一区导航| 日韩专区中文字幕一区二区| 日本不卡1234视频| 成人影院在线| 老司机午夜精品视频在线观看| 欧美大黑bbbbbbbbb在线| 国产精品对白| 中文一区二区三区四区| 日韩福利视频一区| 亚洲精品无播放器在线播放| 国产伦理一区| 久久精品国产亚洲一区二区三区 | 天天av综合| 天堂日韩电影| 欧美日韩精品一区二区三区在线观看| 麻豆久久一区| 国产日韩在线观看视频| 久久伊人精品| 视频精品国内| 亚洲一级大片| 国产精品高潮呻吟久久久久| 成人在线视频你懂的| 91欧美极品| 精品国产欧美日韩| 蜜臀av一区| 欧美日韩在线网站| 在线日本高清免费不卡| 九九久久精品| 亚洲经典自拍| 亚洲综合三区| 男男成人高潮片免费网站| 视频在线观看一区二区三区| 免费观看30秒视频久久| 蜜桃久久av| 成人亚洲欧美| 日本一区二区三区视频在线| 成人精品一区二区三区电影| 日韩精品成人一区二区在线| 日本视频中文字幕一区二区三区| 国产欧美日韩综合一区在线播放 | 欧美日韩国产一区二区三区不卡| 99久久99久久精品国产片桃花 | 国产精品欧美日韩一区| 欧美日韩播放| 91欧美极品| 欧美1区免费| 国产精品丝袜xxxxxxx| 免费在线一区观看| 欧美7777| 日韩专区中文字幕一区二区| 国产一区二区三区免费观看在线| 国产精品美女久久久久久不卡| 日韩1区2区3区| 激情小说亚洲色图| 欧美大黑bbbbbbbbb在线| 亚洲综合欧美| 男女羞羞在线观看| 国产欧美三级| 日韩电影一区二区三区四区| 美女午夜精品| 女人色偷偷aa久久天堂| 蜜臀av性久久久久蜜臀av麻豆| 日韩一区二区在线| 另类人妖一区二区av| 99综合久久| 欧美日韩调教| 黄色成人精品网站| 国产精品vvv| 久久精品国产免费看久久精品| 欧美日韩18| 欧美黄色影院| 国产精品入口| 欧美天堂在线| 欧美美女在线观看| 99精品在线观看| 色小子综合网| 综合久久精品| 久久久久久免费视频| 日韩影院精彩在线| 青青草97国产精品免费观看| 日韩成人午夜电影| 激情久久五月| 日韩一区二区中文| 国产欧美日韩| 伊人久久大香线| 日韩精品1区| 国产在线一区不卡| 亚洲特色特黄| 日本成人在线网站| 日韩精品欧美大片| 99av国产精品欲麻豆| 深夜福利亚洲| 日本一区二区三区电影免费观看| 好吊视频一区二区三区四区| 日韩精品免费观看视频 | 欧美不卡在线| 校园春色亚洲| 国产精品日韩精品中文字幕| 性欧美69xoxoxoxo| 国产精品久久久久久久久久齐齐 | 狠狠综合久久| 日韩精品色哟哟| 青青草国产免费一区二区下载| 欧美hentaied在线观看| 国产aa精品| 99国产精品| 中文字幕免费一区二区三区| 激情欧美丁香| 日日夜夜免费精品| 欧美成人中文| 美女网站视频久久| 91精品国产自产拍在线观看蜜| 日韩一区三区| 成人自拍在线| 人人精品久久| 久久蜜桃精品| 久久亚洲人体| 日韩精品一卡| 久久精品国产一区二区三| 久久九九免费| 国产日韩免费| 欧美一站二站| 日韩精品福利网| 欧美特黄视频| 国色天香一区二区| 国产精品毛片| 国产一区二区亚洲| 三级在线观看一区二区 | 欧美禁忌电影网| 日产精品一区二区| 久久久久毛片免费观看| 黑人精品一区| 91午夜精品| 色999韩欧美国产综合俺来也| 在线日韩中文| 在线成人超碰| 丝袜诱惑制服诱惑色一区在线观看| 国产亚洲一区二区三区啪| 国产精品毛片久久| 国产劲爆久久| 久久精品人人做人人爽电影蜜月| 欧美成人国产| 国产欧美日韩| 日本精品在线一区| 激情一区二区| 成人豆花视频| 免费看av不卡| 中国av一区| 国产在线观看91一区二区三区| 日韩av片子| 美女午夜精品| 欧美激情aⅴ一区二区三区| 久久午夜视频| 精品美女视频| 国内久久精品| 在线天堂资源www在线污| 99久久夜色精品国产亚洲狼 | 国产调教一区二区三区| 桃色av一区二区| 精品在线播放| 久久九九精品视频| 久久精品999| 蜜臀va亚洲va欧美va天堂| 高潮久久久久久久久久久久久久| 久久一综合视频| 免费精品视频最新在线| 牲欧美videos精品| 国产一区二区三区亚洲综合| 日韩欧美午夜| av成人黄色| 群体交乱之放荡娇妻一区二区| 欧美区日韩区| 欧美天堂一区二区| 天堂av在线一区|